Типы рецепторов
Две тысячи лет назад Аристотель написал, что у человека существуют пять чувств: зрение, слух, осязание, обоняние и вкус. За два тысячелетия ученые неоднократно открывали органы новых «шестых чувств», например вестибулярный аппарат или температурные рецепторы. Эти органы чувств часто называют «ворота в мир»: они позволяют животным ориентироваться во внешней среде и воспринимать сигналы себе подобных. Однако не меньшее значение в жизни животных играет и «взгляд внутрь себя»; ученые открыли разнообразные рецепторы, измеряющие кровяное давление, содержание сахара и углекислого газа в крови, осмотическое давление крови, степень растяжения мышц и т. д. Эти внутренние рецепторы, сигналы которых, как правило, не доходят до сознания, позволяют нашей нервной системе управлять разнообразными процессами внутри организма.
Из сказанного ясно, что классификация Аристотеля явно устарела и сегодня число разных «чувств» оказалось бы весьма велико, особенно если рассматривать органы чувств разнообразных организмов, населяющих Землю.
Вместе с тем, по мере изучения этого разнообразия обнаружилось, что в основе работы всех органов чувств лежит один принцип. Внешнее воздействие принимается специальными клетками — рецепторами и меняет МП этих клеток. Этот электрический сигнал называют рецепторным потенциалом. А дальше рецепторный потенциал управляет выделением медиатора из рецепторной клетки, либо частотой ее импульсации. Таким образом, рецептор — это преобразователь внешних воздействий в электрические сигналы, как об этом гениально догадался Вольт.
Рецепторы передают сигналы в нервную систему, где происходит их дальнейшая обработка.
В старые времена на производстве приборы располагались непосредственно у мест измерения. Например, каждый паровой котел был снабжен своим термометром и манометром. Однако в дальнейшем такие приборы, как правило, заменяли датчиками, преобразующими температуру или давление в электрические сигналы; эти сигналы можно было легко передать на расстояние. Теперь оператор смотрит на щит, где собраны приборы, показывающие температуру, давление, скорость вращения турбины и т. д., и не должен обходить по очереди все агрегаты. Фактически, живые организмы выработали такую прогрессивную систему измерения разных величин за сотни миллионов лет до возникновения техники. Роль щита, на который поступают все сигналы, играет при этом мозг.
Разнообразные рецепторы естественно классифицировать по типам воспринимаемых ими внешних воздействий. Например, такие разные рецепторы, как рецепторы органа слуха, рецепторы органа равновесия, рецепторы, обеспечивающие осязание, реагируют на внешние воздействия одного и того же типа — механические. С этой точки зрения можно выделить следующие типы рецепторов.
1) Фоторецепторы, клетки, реагирующие на электромагнитные волны, частота которых лежит в определенном диапазоне.
2) Механорецепторы, клетки, реагирующие на смещение их частей друг относительно друга; к механорецепторам, как уже говорилось, относятся и клетки, воспринимающие звуки, т. е. колебания воды и воздуха определенной частоты, и осязательные механорецепторы, и клетки органов боковой линии рыб, воспринимающие движение воды относительно тела рыбы, и клетки, реагирующие на растяжение мышц и сухожилий, и др.
3) Хеморецепторы, клетки, реагирующие на те или иные химические вещества; их деятельность лежит в основе работы органов обоняния и вкуса.
4) Терморецепторы, клетки, воспринимающие температуру.
5) Электрорецепторы, клетки, реагирующие на электрические поля в окружающей среде.
Пожалуй, эти пять типов рецепторов мы поставили бы сегодня на место пяти чувств, описанных Аристотелем.
Давайте рассмотрим теперь для примера один из типов рецепторных клеток — фоторецепторы.
Фоторецепторы
Фоторецепторы сетчатки позвоночных — это палочки и колбочки. Еще в 1866 г. немецкий анатом М. Шульц обнаружил, что у дневных птиц в сетчатке в основном находятся колбочки, а у ночных птиц — палочки. Он сделал вывод, что палочки служат для восприятия слабого света, а колбочки — сильного. Этот вывод подтвердился последующими исследованиями. Сравнение разных животных добавило много аргументов в пользу этой гипотезы: например, у глубоководных рыб с их огромными глазами в сетчатке имеются только палочки.
Посмотрите на рис. 59. На нем изображена палочка позвоночного животного. У нее есть внутренний сегмент и наружный сегмент, соединенные шейкой. В области внутреннего сегмента палочка образует синапсы и выделяет медиатор, действующий на связанные с ней нейроны сетчатки. Медиатор выделяется, как и у других клеток, при деполяризации. Во внешнем сегменте имеются особые образования — диски, в мембрану которых встроены молекулы родопсина. Этот белок и является непосредственным «приёмником» света.
При изучении палочек оказалось, что палочка может быть возбуждена всего одним фотоном света, т. е. обладает максимально возможной чувствительностью. При поглощении одного фотона МП палочки меняется примерно на 1 мВ. Расчеты показывают, что для такого сдвига потенциала надо повлиять примерно на 1 ООО ионных каналов. Как же один фотон может повлиять на столько каналов? Было известно, что фотон, проникая в палочку, захватывается молекулой родопсина и меняет состояние этой молекулы.
Но единственная молекула нисколько не лучше одного фотона. Оставалось совершенно непонятным, как эта молекула ухитряется изменить МП палочки, тем более, что диски с родопсином электрически не связаны с наружной мембраной клетки.
Разгадка работы палочек в основном была найдена за последние несколько лет. Оказалось, что родопсин, поглотив квант света, приобретает на некоторое время свойства катализатора и успевает изменить несколько молекул специального белка, которые вызывают, в свою очередь, другие биохимические реакции. Таким образом, работа палочки объясняется возникновением цепной реакции, которая запускается при поглощении всего одного кванта света и приводит к появлению внутри палочки тысяч молекул вещества, способного влиять на ионные каналы изнутри клетки.
Что же делает этот внутриклеточный медиатор? Оказывается, мембрана внутреннего сегмента палочки достаточно обычна — стандартна по своим свойствам: она содержит К-каналы, создающие ПП. А вот мембрана наружного сегмента необычна: она содержит только Ка-каналы. В покое они открыты, и хотя их не очень много, этого достаточно, чтобы идущий через них ток снижал МП, деполяризуя палочку. Так вот, внутриклеточный медиатор способен закрывать часть Ка-каналов, при этом сопротивление нагрузки растет и МП тоже нарастает, приближаясь к калиевому равновесному потенциалу. В результате палочка при действии на нее света гиперполяризуется.
А теперь на минуту задумайтесь над тем, что вы только что узнали, и вы сильно удивитесь. Оказывается, наши фоторецепторы выделяют больше всего медиатора в темноте, а вот при освещении они выделяют его меньше, и тем меньше, чем ярче свет. Это удивительное открытие было сделано в 1968г. Ю.А. Трифоновым из лаборатории А.Л. Вызова, когда о механизме работы палочек было известно еще мало.