К155ие9

Содержание

1 Введение

2 Технологические процессы изготовления биполярных

интегральных схем

3 Технология ТТЛ

4 Описание микросхемы К155ИЕ9

5 Список использованных источников

1 Введение

Развитие технологии играет исключительную роль в создании высокого научно-технического уровня производства во всех областях народного хозяйства. Значимость технологии в производстве полупроводниковых приборов и интегральных микросхем особенно велика. Именно постоянное совершенствование технологии полупроводниковых приборов, начиная со времени создания первых транзисторов, привело на определённом этапе её развития к изобретению микросхем, а в дальнейшим к широкому их производству.

Технология интегральных микросхем представляет собой совокупность механических, физических, химических способов обработки различных материалов (полупроводников, диэлектриков, металлов), в итоге которой создаётся интегральная микросхема.

2 Технологические процессы изготовления биполярных интегральных схем.

Технологические процессы будут рассмотрены на примере соз­дания двух видов интегральных микросхем: малой степени интег­рации на основе биполярных транзисторов с изоляцией элементов р-n переходом и на основе изопланарной технологии.

Биполярные микросхемы с изоляцией р-n переходом. Схема технологического процесса представлена на рисунке 1. В качестве исходных используются кремниевые подлож­ки с эпитаксиальной структурой р-n и скрытым n+-слоем.

Термическое окисление проводится для получения на поверхности кремния пленки SiO2 толщиной 0.8 мкм. На ней в процессе первой фотолитографии формируется защитная маска под локальную (разделительную) диффузию бора с целью созда­ния изолирующих областей р-типа. Окисление проводится в пото­ке кислорода с изменением его влажности в три этапа: сухой — влажный — сухой.

При разделительной диффузии в качестве источника диффузанта используется ВВг3. Диффузия проводится в две стадии. Ме­жду двумя стадиями с поверхности кремния удаляется боросиликатное стекло mB2O3-nSiO2. Для травления используется плави­ковая кислота HF. В процессе второй стадии диффузии, проводи­мой, в отличие от первой, в окислительной среде, создается новая пленка SiO2, выполняющая в дальнейшем не только маскирую­щие, но и защитные функции. После разделительной диффузии образуются диффузионные слои р-типа с сопротивлением (2 ¸ 12) om/.

Для создания транзисторной структуры в качестве источников диффузантов используются ВВг3 и РС13 (или РОС13). Диффузи­онный процесс получения базовой области проводится также в две стадии. На первой стадии создается сильно легированный тонкий слой р+-типа с сопротивлением около 90 Ом/. На этой стадии для удаления боросиликатного стекла используется химическое травление в растворе следующего состава: 10 частей HNO3, 15 частей HF и 300 частей Н2О.

Рисунок 1 - Последовательность технологических операций изготовления биполярной микросхемы

Этот раствор с высокой скоростью травит боросиликатное и фосфоросиликатное стекла, практически не разрушая SiO2. После удаления боросиликатного стекла прово­дится вторая стадия диффузии, в процессе которой толщина слоя увеличивается до (1.8 ¸ 2.2) мкм, а его удельное сопротивление (в результате перераспределения бора) повышается до (170 ¸ 200) Ом/. Поскольку вторая стадия проводится в окислительной среде, на поверхности кремния образуется пленка SiO2 толщиной около 0.4 мкм. На ее основе формируется маска для проведения локаль­ной диффузии при создании эмиттерной области. Толщина диффу­зионного эмиттерного слоя (1.0 ¸ 1.4) мкм, удельное сопротивление слоя (3 ¸ 5) Ом/.

Электрическая разводка создается напылением алюминия, фо­толитографией и вжиганием алюминия в водороде при Т = 500° С.

После всех процессов фотолитографии проводится химическая очистка по единой схеме: кипячение в смеси МН4ОН : Н2О : Н2О2 ,(1 : 1 : 1), промывка в деионизованной воде.

Технологический процесс изопланарной биполярной микросхе­мы.Последовательность технологических операций и стру­ктуры транзистора на различных этапах изготовления представле ны соответственно на рисунках 2, 3. В качестве подложек ис­пользуются слабо легированные пластины кремния с эпитаксиаль-ными слоями п-типа (концентра­ция примеси 1015 ¸ 1016 см~3) и скрытыми слоями n+-типа с по­верхностным сопротивлением (15 ¸ 50) О,м/œ. Уровень поверх­ности участков со скрытыми сло­ями ниже уровня остальной по­верхности подложки, что дает воз­можность после зпитаксиаль'ного наращивания совмещать рисунок скрытого слоя с рисунками в дру­гих слоях транзисторной струк­туры. При диффузионном введе­нии примеси в скрытые слои уг­лубления образуются за счет хи­мической реакции ангидрида при­меси с кремнием в области вскры­того в SiО2 окна; при ионном внедрении примеси — за счет разницы в скоростях окисления чистого кремния в области окна и окисленного кремния на ос­тальной поверхности при прове­дении в окисляющей атмосфере процесса разгонки внедренной примеси с одновременным отжигом радиационных дефектов.

Первая группа технологических операций направлена на полу­чение электрической изоляции между элементами схемы. На по­верхности подложки термическим окислением создается пленка SiO2, на которую осаждается из парогазовой смеси пленка нитри­да кремния Si3N4, выполняющая роль маскирующего покрытия при локальном окислении кремния. Толщина пленки Si3N4 0.1 мкм. Подслой Si02 толщиной 0.05 мкм является буфером между кремнием и нитридом кремния.

Рисунок 2 - Последовательность технологических операций изготовления изопла-нарной биполярной микросхемы

Его присутствие снижает механические напряжения в кремнии, вызванные высокой твердостью Si3N4, и тем самым снижает эффективность приповерхностной диффузии кислорода и вероятность образования структуры типа «птичий клюв».

Первый процесс фотолитографии проводится с целью получе­ния рисунка изолирующих областей SiO2. Используя фоторезист (ФР) в качестве защитной маски плазмохимическим травлением во фторсодержащей плазме CF4 + O2 стравливаются пленки Si3N4, SiO2, а также часть эпитаксиального слоя, составляющая 0.55 его общей толщины. В этом случае происходит планаризация поверх­ности подложки, т. е. изолирующий слой SiO2 растет таким обра­зом, что его верхняя плоскость и поверхность кремния лежат в одной плоскости.


Страница: