Задача обработки решеток
Рефераты >> Радиоэлектроника >> Задача обработки решеток

Зависимость поля каждой гармоники от на зеркале может быть представлена только в числах, поэтому интеграл по в пределах - берется численно. Таким путем приходим к интегралу

(9.67)

где — гиперсфероидальные функции, которые берутся в приближении гауссова пучка, т. е. в виде (9.55) и (9.57).

Формула (9.67) учитывает векторный характер поля. Все рас­четы ведутся в предположении, что основная поляризация в ре­зонаторе и, следовательно, . В рассеянном поле при исполь­зовании метода Галеркина надо брать ту же поляризацию. Она в координатах вращения, связанных с диском, представляет собой . Интеграл по , как уже говорилось, можно взять аналитичес­ки. Не останавливаясь на подробностях, их можно найти в [72], заметим, что этот интеграл можно свести к неполной гамма-функ­ции. Для вычисления последней имеются быстро сходящиеся ря­ды. Нахождение одномерного интеграла по численным методом труда не представляет.

Рассмотрим некоторые результаты расчетов. Качественно они такие же, как и в случае шара (§ 9.3). С ростом действительной части диэлектрической проницаемости диска растет смещение частоты (рис. 9.8,а). Мнимая часть , т. е. , на эту величину влияет слабо. Изменение обратной величины к добротности также увеличивается с ростом за счет рассеяния на диске. Мнимая часть проницаемости заметно влияет 'на изме­нение добротности только при , когда омические потери в образце соизмеримы с потерями резонатора за счет рассеяния на диске (рис. 9.8,6).

1 Окружность показана на рис. 9.7 тонкой линией

a)

б)

Рис. 9.8. Сдвиг резонансной частоты и изменение добротности открытого ре­зонатора с диском как функция диска

Рис. 9.9 Изменение добротности открытого резонатора с диском как функция диска

Рис. 9.10. Сравнение параметров резонатора с диэлектрическим шаром и диском

К тому же выводу приходим, рассматривая параметр как функцию для различных значений . Видно, что с увеличением кривая становится все более пологой и извлечение информация об диэлектрического образца становится все более проблема­тичным (рис. 9.9).

Если считать, что 10%-ная доля омических потерь еще раз­личима на фоне потерь на рассеяние, то в области можно измерить порядка , а при только величины .

Таким образом, методом открытого резонатора можно измерять потери только очень плохих диэлектриков. Расчет связи параметров диэлектрика и характеристик резонатора для шара все же проще, чем для диска. Поэтому встает вопрос, нельзя ли установить соответствие между образцами в форме шара и диска. В качестве параметра соответствия естественно взять объем диэлектрического образца. С этой целью были рассчитаны смещения собственной частоты и изменение обратной величины добротнос­ти для шара и диска с одинаковым объемом. Оказалось (рис. 9.10), что эти зависимости, качественно одинаковые, количествен­но различаются заметно. Поэтому для получения приемлемой точности измерений необходимо тарировочные кривые строить на ос­нове адекватной математической модели.

ЗАКЛЮЧЕНИЕ, ПЕРСПЕКТИВЫ

Метод интегральных уравнений в электродинами­ке появился сравнительно недавно и быстро завоевал популяр­ность. Этому способствовал целый ряд его преимуществ: простота метода и, следовательно, его доступность; единство подходов к ре­шению весьма широкого круга задач; удобство реализации в ви­де вычислительных программ алгоритмов, на нем основанных, и, наконец, высокая степень универсальности.

Остановимся на указанных чертах метода несколько подробнее. Единство подходов к большому кругу задач означает, как видно из гл. 2 и 3, что интегральные уравнения, эквивалентные различным граничным задачам электродинамики, составляются по одному и тому же стереотипу. При этом для задач на телах вращения нет необходимости проходить стадию уравнений для произвольных тел. Истокообразные представления (3.8) и (3.9) вместе с формулами для элементов тензорной функции Грина поз­воляют" легко и быстро, примерно так же как из крупных блоков строят дома, составлять необходимые уравнения.

Те же «крупные блоки» в виде подпрограмм для -функции для элементов тензора Грина и решения систем линейных алге­браических уравнений позволяют достаточно быстро и просто компоновать программы для всех сформулированных в книге за­дач и для многих других. Те же подпрограммы дают возможность после численного решения уравнений найти поле в любой точке пространства.


Страница: