Жидкие кристаллы
Рефераты >> Радиоэлектроника >> Жидкие кристаллы

Эксперимент подтверждает выводы рассмотренной выше простой механической модели прохождения тока в жидком кристалле. Однако во многих случаях ситуа­ция оказывается не такой простой, как может показать­ся на первый взгляд.

Часто постоянное напряжение, приложенное к слою нематика, вызывает в результате возникшего тока не однородное изменение ориентации молекул, а периоди­ческое в пространстве возмущение ориентации директо­ра. Дело здесь в том, что, говоря об ориентирующем молекулы нематика воздействии ионов носителей тока, мы пока что пренебрегали тем, что ионы будут вовле­кать в свое движение также и молекулы нематика. В ре­зультате такого вовлечения прохождение тока в жид­ком кристалле может сопровождаться гидродинамичес­кими потоками, вследствие чего может установиться пе­риодическое в пространстве распределение скоростей течения жидкого кристалла. Вследствие же обсуждав­шейся в предыдущем разделе связи потоков жидкого кристалла с ориентацией директора в слое нематика воз­никнет периодическое возмущение распределения директора. Подробней на этом интересном и важном в при­ложении жидких кристаллов явлении мы остановимся ниже, рассказывая об электрооптике нематиков.

Флексоэлектрический эффект. Говоря о форме мо­лекул жидкого кристалла, мы пока аппроксимировали ее жесткой палочкой. А всегда ли такая аппроксимация хороша? Рассматривая модели структур молекул, можно прийти к заключению, что не для всех соединений приб­лижение молекула-палочка наиболее адекватно их фор­ме. Далее мы увидим, что с формой молекул связан ряд интересных, наблюдаемых на опыте, свойств жид­ких кристаллов. Сейчас мы остановимся на одном из таких свойств жидких кристаллов, связанном с отклоне­нием ее формы от простейшей молекулы-палочки, про­являющемся в существовании флексоэлектрического эффекта.

Интересно, что открытие флексоэлектрического эф­фекта, как иногда говорят о теоретических предсказа­ниях, было сделано на кончике пера американским физи­ком Р. Мейером в 1969 году.

Рассматривая модели жидких кристаллов, образо­ванных не молекулами-палочками, а молекулами более сложной формы, он задал себе вопрос: «Как форма молекулы может обнаружить себя в макроскопических свойствах?» Для конкретности Р. Мейер предположил, что молекулы имеют грушеобразную или банановидную форму. Далее он предположил, что отклонение формы молекулы от простейшей, рассматривавшейся ранее, сопровождается возникновением у нее электрического дипольного момента.

Возникновение дипольного момента у молекулы не­симметричной формы — типичное явление и связано оно с тем, что расположение «центра тяжести» отрица­тельного электрического заряда электронов в молекуле может быть несколько смещено относительно «центра тяжести» положительных зарядов атомных ядер моле­кулы. Это относительное смещение отрицательных и по­ложительных зарядов относительно друг друга и приво­дит к возникновению электрического дипольного момен­та молекулы. При этом в целом молекула остается нейт­ральной, так как величина отрицательного заряда элек­тронов в точности равна положительному заряду ядер. Величина дипольного момента равна произведению за­ряда одного из знаков на величину их относительного смещения. Направлен дипольный момент вдоль направ­ления смещения от отрицательного заряда к положи­тельному. Для грушеобразной молекулы направление ди­польного момента по симметричным соображениям должно совпадать с осью вращения, для банановидной молекулы — направлено поперек длинной оси.

Рассматривая жидкий кристалл таких молекул, легко понять, что без влияния на него внешних воздействий дипольный момент макроскопически малого, но, разуме­ется, содержащего большое число молекул объема жид­кого кристалла, равен нулю. Это связано с тем, что нап­равление директора в жидком кристалле задается ориен­тацией длинных осей молекул, количество же молекул, дипольный момент которых направлен по директору в ту и другую сторону — для грушеобразных молекул, или для банановидных молекул — поперек направления ди­ректора в ту и другую сторону, одинаково. В ре­зультате дипольный момент любого макроскопиче­ского объема жидкого кристалла равен нулю, так как он равен сумме дипольных моментов отдельных молекул.

Так, однако, дело обстоит лишь в неискаженном об­разце. Стоит путем внешнего воздействия, например ме­ханического, исказить, скажем, изогнуть его, как моле­кулы начнут выстраиваться, и распределение направле­ний дипольных моментов отдельных молекул вдоль ди­ректора для грушеподобных молекул и поперек директо­ра для банановидных будет неравновероятным. Это означает, что возникает преимущественное направление ориентации дипольных моментов отдельных молекул и, как следствие, появляется макроскопический дипольный момент в объеме жидкого кристалла. Причиной такого выстраивания являются стерические факторы, т. е. фак­торы, обеспечивающие плотнейшую упаковку молекул. Плотнейшей упаковке молекул именно и соответствует такое выстраивание молекул, при котором их диполь-ные моменты «смотрят» преимущественно в одну сто­рону.

С макроскопической точки зрения рассмотренный эффект проявляется в возникновении в слое жидкого кристалла электрического поля при деформации. Как видно из рисунка, это связано с тем, что при выстраива­нии диполей на одной поверхности деформированного кристалла оказывается избыток зарядов одного, а на противоположной поверхности — другого знака. Таким обрезом, наличие или отсутствие флексоэлектрического эффекта несет информацию о форме молекул и ее ди-польном моменте. Для молекул-палочек такой эффект отсутствует. Для только что рассмотренных форм моле­кул эффект есть. Однако, как уже, наверное, заметили наиболее внимательные читатели, для грушеподобных и банановидных молекул для наблюдения возникновения электрического поля в слое надо вызвать в нем разли­чные деформации. Грушеподобные молекулы дают эф­фект при поперечном изгибе, а банановидные — при продольном изгибе жидкого кристалла

Предсказанный теоретически флексоэлектрический эффект вскоре был обнаружен экспериментально. При­чем на эксперименте можно было пользоваться как пря­мым, так и обратным эффектом. Это означает, что можно не только путем деформации ЖК индуцировать в нем электрическое поле и макроскопический диполь­ный момент (прямой эффект), но и, прикладывая к об­разцу внешнее электрическое поле, вызывать дефор­мацию ориентации директора в жидком кристалле.

Электронная игра, электронный словарь и телевизор на жк»

Известно, какой популярностью у молодежи пользу­ются различные электронные игры, обычно устанавлива­емые в специальной комнате аттракционов в местах об­щественного отдыха или фойе кинотеатров. Успехи в разработке матричных жидкокристаллических дисплеев сделали возможным создание и массовое производство подобных игр в миниатюрном, так сказать, карманном ис­полнении. На рис. 28 изображена игра «Ну, погоди!», ос­военная отечественной промышленностью. Габариты этой игры, как у записной книжки, а основным ее эле­ментом является жидкокристаллический матричный дис­плей, на котором высвечиваются изображения волка, зай­ца, кур и катящихся по желобам яичек. Задача играюще­го, нажимая кнопки управления, заставить волка, пере­мещаясь от желоба к желобу, ловить скатывающиеся с желобов яички в корзину, чтобы не дать им упасть на землю и разбиться. Здесь же отметим, что, помимо раз­влекательного назначения, эта игрушка выполняет роль часов и будильника, т. е. в другом режиме работы на дисплее «высвечивается» время и может подаваться зву­ковой сигнал в требуемый момент времени.


Страница: