Жидкие кристаллыРефераты >> Радиоэлектроника >> Жидкие кристаллы
Эксперимент подтверждает выводы рассмотренной выше простой механической модели прохождения тока в жидком кристалле. Однако во многих случаях ситуация оказывается не такой простой, как может показаться на первый взгляд.
Часто постоянное напряжение, приложенное к слою нематика, вызывает в результате возникшего тока не однородное изменение ориентации молекул, а периодическое в пространстве возмущение ориентации директора. Дело здесь в том, что, говоря об ориентирующем молекулы нематика воздействии ионов носителей тока, мы пока что пренебрегали тем, что ионы будут вовлекать в свое движение также и молекулы нематика. В результате такого вовлечения прохождение тока в жидком кристалле может сопровождаться гидродинамическими потоками, вследствие чего может установиться периодическое в пространстве распределение скоростей течения жидкого кристалла. Вследствие же обсуждавшейся в предыдущем разделе связи потоков жидкого кристалла с ориентацией директора в слое нематика возникнет периодическое возмущение распределения директора. Подробней на этом интересном и важном в приложении жидких кристаллов явлении мы остановимся ниже, рассказывая об электрооптике нематиков.
Флексоэлектрический эффект. Говоря о форме молекул жидкого кристалла, мы пока аппроксимировали ее жесткой палочкой. А всегда ли такая аппроксимация хороша? Рассматривая модели структур молекул, можно прийти к заключению, что не для всех соединений приближение молекула-палочка наиболее адекватно их форме. Далее мы увидим, что с формой молекул связан ряд интересных, наблюдаемых на опыте, свойств жидких кристаллов. Сейчас мы остановимся на одном из таких свойств жидких кристаллов, связанном с отклонением ее формы от простейшей молекулы-палочки, проявляющемся в существовании флексоэлектрического эффекта.
Интересно, что открытие флексоэлектрического эффекта, как иногда говорят о теоретических предсказаниях, было сделано на кончике пера американским физиком Р. Мейером в 1969 году.
Рассматривая модели жидких кристаллов, образованных не молекулами-палочками, а молекулами более сложной формы, он задал себе вопрос: «Как форма молекулы может обнаружить себя в макроскопических свойствах?» Для конкретности Р. Мейер предположил, что молекулы имеют грушеобразную или банановидную форму. Далее он предположил, что отклонение формы молекулы от простейшей, рассматривавшейся ранее, сопровождается возникновением у нее электрического дипольного момента.
Возникновение дипольного момента у молекулы несимметричной формы — типичное явление и связано оно с тем, что расположение «центра тяжести» отрицательного электрического заряда электронов в молекуле может быть несколько смещено относительно «центра тяжести» положительных зарядов атомных ядер молекулы. Это относительное смещение отрицательных и положительных зарядов относительно друг друга и приводит к возникновению электрического дипольного момента молекулы. При этом в целом молекула остается нейтральной, так как величина отрицательного заряда электронов в точности равна положительному заряду ядер. Величина дипольного момента равна произведению заряда одного из знаков на величину их относительного смещения. Направлен дипольный момент вдоль направления смещения от отрицательного заряда к положительному. Для грушеобразной молекулы направление дипольного момента по симметричным соображениям должно совпадать с осью вращения, для банановидной молекулы — направлено поперек длинной оси.
Рассматривая жидкий кристалл таких молекул, легко понять, что без влияния на него внешних воздействий дипольный момент макроскопически малого, но, разумеется, содержащего большое число молекул объема жидкого кристалла, равен нулю. Это связано с тем, что направление директора в жидком кристалле задается ориентацией длинных осей молекул, количество же молекул, дипольный момент которых направлен по директору в ту и другую сторону — для грушеобразных молекул, или для банановидных молекул — поперек направления директора в ту и другую сторону, одинаково. В результате дипольный момент любого макроскопического объема жидкого кристалла равен нулю, так как он равен сумме дипольных моментов отдельных молекул.
Так, однако, дело обстоит лишь в неискаженном образце. Стоит путем внешнего воздействия, например механического, исказить, скажем, изогнуть его, как молекулы начнут выстраиваться, и распределение направлений дипольных моментов отдельных молекул вдоль директора для грушеподобных молекул и поперек директора для банановидных будет неравновероятным. Это означает, что возникает преимущественное направление ориентации дипольных моментов отдельных молекул и, как следствие, появляется макроскопический дипольный момент в объеме жидкого кристалла. Причиной такого выстраивания являются стерические факторы, т. е. факторы, обеспечивающие плотнейшую упаковку молекул. Плотнейшей упаковке молекул именно и соответствует такое выстраивание молекул, при котором их диполь-ные моменты «смотрят» преимущественно в одну сторону.
С макроскопической точки зрения рассмотренный эффект проявляется в возникновении в слое жидкого кристалла электрического поля при деформации. Как видно из рисунка, это связано с тем, что при выстраивании диполей на одной поверхности деформированного кристалла оказывается избыток зарядов одного, а на противоположной поверхности — другого знака. Таким обрезом, наличие или отсутствие флексоэлектрического эффекта несет информацию о форме молекул и ее ди-польном моменте. Для молекул-палочек такой эффект отсутствует. Для только что рассмотренных форм молекул эффект есть. Однако, как уже, наверное, заметили наиболее внимательные читатели, для грушеподобных и банановидных молекул для наблюдения возникновения электрического поля в слое надо вызвать в нем различные деформации. Грушеподобные молекулы дают эффект при поперечном изгибе, а банановидные — при продольном изгибе жидкого кристалла
Предсказанный теоретически флексоэлектрический эффект вскоре был обнаружен экспериментально. Причем на эксперименте можно было пользоваться как прямым, так и обратным эффектом. Это означает, что можно не только путем деформации ЖК индуцировать в нем электрическое поле и макроскопический дипольный момент (прямой эффект), но и, прикладывая к образцу внешнее электрическое поле, вызывать деформацию ориентации директора в жидком кристалле.
Электронная игра, электронный словарь и телевизор на жк»
Известно, какой популярностью у молодежи пользуются различные электронные игры, обычно устанавливаемые в специальной комнате аттракционов в местах общественного отдыха или фойе кинотеатров. Успехи в разработке матричных жидкокристаллических дисплеев сделали возможным создание и массовое производство подобных игр в миниатюрном, так сказать, карманном исполнении. На рис. 28 изображена игра «Ну, погоди!», освоенная отечественной промышленностью. Габариты этой игры, как у записной книжки, а основным ее элементом является жидкокристаллический матричный дисплей, на котором высвечиваются изображения волка, зайца, кур и катящихся по желобам яичек. Задача играющего, нажимая кнопки управления, заставить волка, перемещаясь от желоба к желобу, ловить скатывающиеся с желобов яички в корзину, чтобы не дать им упасть на землю и разбиться. Здесь же отметим, что, помимо развлекательного назначения, эта игрушка выполняет роль часов и будильника, т. е. в другом режиме работы на дисплее «высвечивается» время и может подаваться звуковой сигнал в требуемый момент времени.