Жидкие кристаллыРефераты >> Радиоэлектроника >> Жидкие кристаллы
При понижении температуры все превращения происходят в обратном порядке и точно при тех же температурах, т. е. последовательность фаз такова: прозрачный расплав-смутный расплав-^кристалл или в принятых сокращениях ИЖ-^НЖК-^ТК. " Если все описанные превращения наблюдаются, например, для соединения п—метонсйбензилиден—п'—бу-тиланилин или, как принято сокращенно называть это соединение, МББА, то наблюдаемая жидкокристаллическая фаза называется нематической или просто немати-KOMj Смена же фазовых состояний характеризуется следующими температурами. Температура первого плавления Гя,=21°С. Ниже ТдМББА находится в обычном кристаллическом состоянии. От Т^ до температуры просветления 7^==41°С МББА обладает нематической жидкокристаллической фазой, и выше Тм — обычная (изотропная) жидкость. Интервал температур от Гд, до tn для различных веществ может быть от единиц до сотни гра дусов. Типичное же значение этого интервала — порядка нескольких десятков градусов.
Для того чтобы разобраться, как устроена жидкокристаллическая фаза и чем она отличается от обычной жидкости или, как мы иногда будем дальше говорить, от изотропной жидкости *, нужно обратить внимание на форму молекул соединения, образующего жидкокристаллическую фазу.
^ Чтобы схематично представить себе устройство нематика, удобно образующие его молекулы представить в виде палочек. Для такой идеализации есть физические основания. Молекулы, образующие жидкие кристаллы, как уже говорилось, представляют собой типичные для многих органических веществ образования со сравнительно большим молекулярным весом, протяженности которых в одном направлении в 2—3 раза больше, чем в поперечном. Структура молекулы типичного нематика приведена на рис. 3. Можно считать, что направление введенных нами палочек совпадает с длинными осями молекул. При введенной нами идеализации структуру нематика следует представлять как «жидкость одинаково ориентированных палочек». Это означает, что центры тяжести палочек расположены и движутся хаотически, как в жидкости, а ориентация при этом остается у всех палочек одинаковой и неизменной (см. рис. 4).
Напомним, что в обычной жидкости не только центры тяжести молекул движутся хаотически, но и ориентации выделенных направлений молекул совершенно случайны
и не скоррелированны между собой. А в качестве выделенных направлений в молекуле могут выступать различные величины, например, электрический дипольный момент, магнитный момент или, как в рассматриваемом нами случае, анизотропия формы, характеризуемая выделенными направлениями или, как говорят, осями. В связи с описанным полным хаосом в жидкости жидкость (даже состоящая из анизотропных молекул) изотропна, т. е. ее свойства не зависят от направления.
На самом деле, конечно, молекулы нематика подвержены не только случайному поступательному движению, но и ориентация их осей испытывает отклонения от направления, определяющего ориентацию палочек в рассматриваемой нами жидкости. Поэтому направления палочек задают преимущественную, усредненную ориентацию, и реально молекулы совершают хаотические ориентационные колебания вокруг этого направления усредненной ориентации. Амплитуда соответствующих ориен-тационных колебаний молекул зависит от близости жидкого кристалла к точке фазового перехода в обычную жидкость tn, возрастая по мере приближения температуры нематика к температуре фазового перехода. В точке фазового перехода ориентационное упорядочение молекул полностью исчезает и ориентационные движения молекул так же, как и трансляционные, оказываются полностью хаотическими.
В связи с описанной картиной поведения нематика его принято описывать следующим образом. Для характеристики ориентационного порядка вводится вектор единичной длины с, называемый директором, направление которого совпадает с направлением введенных выше палочек. Таким образом, директор задает выделенное, преимущественное, направление ориентации молекул в холестерине. Кроме того, вводится еще ОДНА величина, параметр порядка, который характеризует, насколько велика степень ориентационного упорядочения молекул или, что то же самое, насколько мала разупорядоченность ориентаций молекул. Параметр порядка определяется следующим образом:
S=^«cos»e>-73), (1) где в—угол между направлениями директора и мгно-
венным направлением длинной оси молекул, a •<cos*e>
обозначает среднее по времени значении cos'@.
Из формулы (1) ясно, что параметр 5 может принимать значения от 0 до 1. Значение -S==1 соответствует полному ориентационному порядку. Причем .S==1 достигается, как нетрудно понять, если значение в не изменяется во времени и равно 0, т. е. если направление длинных осей молекул строго совпадает с направлением директора. <S==0 означает полный ориентационный беспорядок. В этом случае угол 9 с равной вероятностью принимает значения от 0 до л, a -<cos^9>=='/3. Значение S==0, таким образом, соответствует уже нематику, перешедшему в изотропную жидкость.
В нематической же фазе значение параметра порядка S^>0, минимально непосредственно при температуре перехода Т 14 из изотропной жидкости в нематическую фазу и возрастает по мере понижения температуры ниже tn' В целом же при изменении температуры происходит смена следующих фазовых состояний. При температуре ниже точки перехода нематика в обыкновенный кристалл или, как ее называют, температуре плавления Тщ — кристаллическое состояние. В интервале температур от Т м, до tn—нематический жидкий кристалл. Выше tin— обычная жидкость.
Пока что речь шла об однодоменном состоянии нема-тического образца, в котором ориентация директора одинакова во всех его точках, как изображено на рис. 4. В таком однодоменном образце нематика наиболее ярко проявляются его свойства, типичные для твердых кристаллов, в частности, двупреломление света. Последнее означает, что показатели преломления для света, плоскость поляризации которого перпендикулярна директору и плоскость поляризации которого содержит директор, указываются различными. Однако для того чтобы полунить однодоменный образец нематика, как, впрочем, и любых других разновидностей жидких кристаллов, необ ходимо принятие специальных мер, о которых будет рассказано ниже.
Если же не приняты специальные предосторожности, то жидкокристаллический образец представляет собой совокупность хаотическим образом ориентированных малых однодоменных областей. Именно с такими образцами, как правило, имели дело первые исследователи жидких кристаллов, и мутный расплав, возникавший после первого плавления МББА, о котором говорилось выше, и был образцом такого вида. На границах раздела различным образом ориентированных однодоменных областей в таких образцах происходит, как говорят, нарушение оптической однородности или, что то же самое, скачок значения показателя преломления. Это непосредственно следует из сказанного выше о двупреломлении однодоменного нематического образца и просто соответствует тому, что для света, пересекающего границу раздела двух областей с различной ориентацией директора, показатели преломления этих областей различны, т. е. показатель преломления испытывает скачок. А как хорошо известно, на границе раздела двух областей с различными показателями преломления свет испытывает отражение. С таким отражением каждый знаком на примере оконных стекол. Так же, как и в случае с оконным стеклом, на одной границе раздела (одном скачке оптической однородности) отражение света в нематике может быть невелико, но если таких границ много (в образце много неупорядоченных однодоменных областей), такие нерегулярные нарушения оптической однородности приводят к сильному рассеянию света. Вот почему нематики, если не принять специальных мер, сильно рассеивают свет. После первого плавления при температуре Тд, возникает мутный расплав.