Жидкие кристаллыРефераты >> Радиоэлектроника >> Жидкие кристаллы
Важно, что в описываемом транспаранте изменение оптических характеристик жидкокристаллического слоя происходит локально — в точке засветки фотополупроводника. Поэтому такие транспаранты обладают очень высокой разрешающей способностью. Так, объем информации, содержащейся на телевизионном экране, может быть записан на транспаранте размерами менее 1Х1 см^.
Описанный способ записи изображения, помимо всего прочего, обладает большими достоинствами, так как он делает ненужной сложную систему коммутации, т. е. систему подвода электрических сигналов, которая применяется в матричных экранах на жидких кристаллах.
Пространственно-временные модуляторы света. Управляемые оптические транспаранты могут быть использованы не только как элементы проекционного устройства, но и выполнять значительное число функций, связанных с преобразованием, хранением и обработкой оптических сигналов. В связи с тенденциями развития методов передачи и обработки информации с использованием оптических каналов связи, позволяющих увеличить быстродействие устройств и объем передаваемой информации, управляемые оптические транспаранты на жидких кристаллах представляют значительный интерес и с этой точки зрения. В этом случае их еще принято называть пространственно-временными модуляторами света (ПВМС), или световыми клапанами. Перспективы и масштабы применения ПВМС в устройствах обработки оптической информации определяются тем, насколько сегодняшние характеристики оптических транспарантов могут быть улучшены в сторону достижения максимальной чувствительности к управляющему излучению, повышения быстродействия и пространственного разрешения световых сигналов, а также диапазона длин волн излучения, в котором надежно работают эти устройства. Как уже отмечалось, одна из основных проблем — это проблема быстродействия жидкокристаллических элементов, однако уже достигнутые характеристики модуляторов света позволяют совершенно определенно утверждать, что они займут значительное место в системах обработки оптической информации. Ниже рассказывается о ряде возможных применений модуляторов света.
Прежде всего отметим высокую чувствительность модуляторов света к управляющему световому потоку, которая характеризуется интенсивностью светового потока всего 10 ^—10 ^ Вт/см^. Кроме того, достигнуто высокое пространственное разрешение сигнала — около 300 линий на 1 мм. Спектральный диапазон работы модуляторов, выполненных на различных полупроводниковых материалах, перекрывает длины волн от ультрафиолетового до ближнего инфракрасного излучения. Очень важно, что в связи с применением в модуляторах фотополупроводников удается улучшить временные характеристики устройств по сравнению с быстродействием собственно жидких кристаллов. Так, модуляторы света за счет свойств фотополупроводника могут зарегистрировать оптический сигнал продолжительностью всего 10 ^— 10"^ с. Разумеется, изменение оптических характеристик жидкого кристалла в точке регистрации сигнала происходит с запаздыванием, т. е. более медленно, в соответствии с временем изменения оптических характеристик жидкого кристалла при наложении на него (или снятии) электрического поля.
Какие же, кроме уже обсуждавшихся функций, могут выполнять модуляторы света? При соответствующем подборе режима работы модулятора они могут выделять контур проектируемого на него изображения. Если контур перемещается, то можно визуализировать его движение. При этом существенно, что длина волны записывающего изображения излучения и считывающего излучения могут отличаться. Поэтому модуляторы света позволяют, например, визуализировать инфракрасное излучение, или с помощью видимого света модулировать пучки инфракрасного излучения, или создавать изображения в инфракрасном диапазоне длин волн.
В другом режиме работы модуляторы света могут выделять области, подвергнутые нестационарному освещению. В этом режиме работы из всего изображения выделяются, например, только перемещающиеся по изображению световые точки, или мерцающие его участки. Модуляторы света могут использоваться как усилители яркости света (в 10^—10° раз и более) В связи же с их высокой пространственной разрешающей способностью их использование оказывается эквивалентным усилителю с очень большим (10"—10^) числом каналов. Перечисленные функциональные возможности опти ческих модуляторов дают Основание использовать их 6 многочисленных задачах обработки оптической информации, таких как распознавание образов, подавление помех, спектральный и корреляционный анализ, интерферометрия, в том числе запись голограмм в реальном масштабе времени, и т. д. Насколько широко перечисленные возможности жидкокристаллических оптических модуляторов реализуются в надежные технические устройства, покажет ближайшее будущее.
Оптический микрофон. Только что было рассказано об управлении световыми потоками с помощью света. Однако в системах оптической обработки информации и связи возникает необходимость преобразовывать не только световые сигналы в световые, но и другие самые разнообразные воздействия в световые сигналы. Такими воздействиями могут быть давление, звук, температура, деформация и т. д. И вот для преобразования этих воздействий в оптический сигнал жидкокристаллические устройства оказываются опять-таки очень удобными и перспективными элементами оптических систем.
Конечно, существует масса методов преобразовывать перечисленные воздействия в оптические сигналы, однако подавляющее большинство этих методов связано сначала с преобразованием воздействия в электрический сигнал, с помощью которого затем можно управлять световым потоком. Таким образом, методы эти двуступенчатые и, следовательно, не такие уж простые и экономичные в реализации. Преимущество применения в этих целях жидких кристаллов состоит в том, что с их помощью самые разнообразные воздействия можно непосредственно переводить в оптический сигнал, что устраняет промежуточное звено в цепи воздействие—световой сигнал, а значит, вносит принципиальное упрощение в управление световым потоком. Другое достоинство ЖК-элементов в том, что они легко совместимы с узлами волоконно-оптических устройств.
Чтобы проиллюстрировать возможности с помощью ЖК управлять световыми сигналами, расскажем о принципе работы «оптического микрофона» на ЖК—устройства, предложенного для непосредственного перевода акустического сигнала в оптический.
Принципиальная схема устройства оптического микрофона очень проста. Его активный элемент представляет собой ориентированный слой нематика. Звуковые коле бания создают периодические во времени деформации слоя, вызывающие также переориентации молекул и модуляцию поляризации (интенсивности) проходящего поляризованного светового потока.
Исследования характеристик оптического микрофона на ЖК, выполненные в Акустическом институте АН СССР, показали, что по своим параметрам он не уступает существующим образцам и может быть использован в оптических линиях связи, позволяя осуществлять непосредственное преобразование звуковых сигналов в оптические. Оказалось также, что почти во всем температурном интервале существования нематической фазы его акусто-оптические характеристики практически не изменяются