Работа электрических органов рыб
Рефераты >> Биология >> Работа электрических органов рыб

Потенциалы сердца были использованы в медицине не только для диагностики, но и для управления медицинской аппаратурой. Представьте себе, что врачу необходимо сделать рентгеновские снимки сердца в разные фазы его цикла, т.е. в момент максимального сокращения, максимального расслабления и т.д.; это бывает необходимо при некоторых заболеваниях. Но как поймать момент наибольшего сокращения? Приходится делать много снимков в надежде, что один из них попадет в нужную фазу. И вот советские ученые В.С. Гурфинкель, В.Б. Малкин и М.Л. Цетлин решили включать рентгеновскую аппаратуру от зубца ЭКГ, Для этого потребовалось не очень сложное электронное устройство, которое включало съемку с заданной задержкой относительно зубца ЭКГ, Остроумное само по себе решение задачи особенно интересно тем, что это было одно из первых устройств, в которых естественные потенциалы организма управляют теми или иными искусственными устройствами; эта область техники получила название биоуправления.

Скелетные мышцы тела тоже генерируют потенциалы, которые можно регистрировать с поверхности кожи. Однако для этого требуется более совершенная аппаратура, чем для регистрации ЭКГ. Отдельные мышечные волокна обычно работают асинхронно, их сигналы, накладываясь друг на друга, частично компенсируются, и в результате получаются меньшие потенциалы, чем в случае ЭКГ. Электрическая активность скелетной мышцы называется электромиограммой – ЭМГ. Впервые ПД мышечных волокон человека обнаружил, прослушивая их с помощью телефонного аппарата, русский ученый Н.Е. Введенский еще в 1882 г. В 1907 г. немецкий ученый Г. Пипер использовал для их объективной регистрации струнный гальванометр. Однако это был сложный и трудоемкий метод. Только после того как в 1923 г. появился катодный осциллограф и электронная техника, электромиография стала усиленно развиваться. Сейчас ее широко применяют в науке, в медицине, в спорте, а также для биоуправления. Одно из первых замечательных применений биоуправления с помощью ЭМГ – создание протезов для людей, потерявших руку. Такие протезы впервые были созданы в нашей стране.

А что такое ЭЭГ? Это электроэнцефалограмма, т.е. электрическая активность мозга, колебания потенциала, создаваемые работой нейронов мозга и регистрируемые прямо с поверхности головы. Нервные клетки, как и мышечные волокна, работают неодновременно: когда одни из них создают на поверхности кожи положительный потенциал, другие создают отрицательный. Взаимная компенсация потенциалов тут еще сильнее, чем в случае ЭМГ. В результате амплитуда ЭЭГ примерно в сто раз меньше, чем ЭКГ, поэтому их регистрация требует более чувствительной аппаратуры. Впервые ЭЭГ была зарегистрирована русским ученым В, В. Правдич-Немским на собаках с помощью струнного гальванометра; он вводил собакам кураре, чтобы более сильные мышечные токи не мешали регистрации токов мозга. В 1924 г. немецкий психиатр Г. Бергер начал в Йенском университете изучение ЭЭГ человека. Он описал периодические колебания потенциалов мозга, имеющие частоту около 10 Гц, которые называют альфа-ритмом, Он же впервые зарегистрировал ЭЭГ человека при припадке эпилепсии и пришел к выводу, что Гальвани был прав, предполагая, что при эпилепсии в нервной системе возникает участок, где токи особенно сильны. Поскольку речь шла об очень слабых потенциалах, зарегистрированных малоизвестным врачом, результаты Бергера долго не привлекали внимания; он сам опубликовал их только через 5 лет после сделанного открытия. II только после того как в 1930 г. их подтвердили знаменитые английские ученые Эдриан и Мэтьюс, на них была «…поставлена печать академического одобрения», по выражению Г. Уолтера, английского ученого, который занимался клиническими аспектами ЭЭГ в лаборатории Голла. В этой лаборатории были разработаны методы, которые позволяли по ЭЭГ определять местоположение опухоли или кровоизлияния в мозгу, подобно тому, как ранее научились по ЭКГ определять место инфаркта в сердце. В дальнейшем кроме альфа-ритма были открыты и другие ритмы мозга, в частности ритмы, связанные с разными типами сна. Существует масса проектов биоуправления с помощью ЭЭГ. Например, если у водителя все время регистрировать ЭЭГ, то можно с помощью ЭВМ определить момент, кода он начинает дремать, и будить его. К сожалению, все такие проекты пока трудно реализовать, так как амплитуда ЭЭГ очень мала.

Кроме ЭЭГ – колебаний потенциала мозга в отсутствие специальных воздействий, существует еще и другая форма потенциалов мозга – вызванные потенциалы. ВП – это электрические реакции, возникающие в ответ на вспышку света, звук и т.д. Так как на яркую вспышку света отвечают почти одновременно сразу много нейронов мозга, то ВП обычно имеют гораздо большую величину, чем ЭЭГ. Не случайно они были обнаружены гораздо раньше, чем ЭЭГ. С помощью ВП можно решать интересные научные задачи. Например, после вспышки света ответ раньше всего возникает в затылочной области мозга. Отсюда можно сделать вывод, что именно в эту область поступают сигналы о свете. При электрическом раздражении кожи ВП возникают в темной области мозга. При раздражении кожи руки они возникают в одном месте, кожи ноги – в другом. Можно составить карту таких ответов и эта карта показывает, что поверхность кожи дает проекцию на теменную область коры мозга человека. Интересно, что при этом проектировании нарушаются некоторые пропорции, например проекция кисти руки оказывается непропорционально большой. Да это и естественно: о руке мозгу нужна гораздо более подробная информация, чем, например, о спине,

Электрическое хозяйство инфузории

В этой книге мы рассказывали вам об электрических явлениях в клетках самых разных животных – лягушки и человека, усоногого рака и кальмара. Но все это были многоклеточные животные. А сейчас обратимся к простейшим. Простейшие замечательны тем, что это одноклеточные животные, т.е., с одной стороны, это всего одна клетка, а с другой – организм с достаточно сложным поведением. Этим обусловлены замечательные особенности простейших. У многоклеточных существует разделение труда между разными типами клеток, у простейших, напротив, все функции совмещены в пределах одной клетки, могут выполняться только ею и должны быть согласованы между собой.

Посмотрим же, как живет известная всем со школьных времен – с 6-го класса – пресноводная инфузория туфелька и какую роль в ее жизни играют электрические процессы.

Значительная часть тела туфельки покрыта прочным панцирем из правильно расположенных шестиугольников, в котором имеются ряд просветов для рта, места выброса остатков пищи и др. Кроме того, на поверхности тела туфельки находятся около 15 тысяч ресничек – ее органов движения. Наконец, на поверхности находятся органы защиты – трихоцисты, устройства, которые при раздражении выбрасывают наружу длинную нить, выделяющую ядовитое вещество так же как стрекательные клетки крапивы.

Некоторые реснички, расположенные около рта инфузории, служат не для движения, а для того чтобы загонять пищу в рот. У туфельки рот все время открыт, и она непрерывно питается бактериями. У некоторых других хищных инфузорий рот открывается в момент захвата пищи. Пища, попавшая в рот, через глотку проходит в мембранный пузырек, который отрывается от глотки и совершает сложное путешествие внутри тела инфузории. Этот пузырек называют пищеварительной вакуолью. Таких вакуолей в один и тот же момент может быть много: одни только оторвались от глотки, другие прошли часть пути, третьи уже подходят к специальному участку поверхности, где выбрасываются наружу непереваренные остатки пищи. С нашей, человеческой точки зрения, это довольно необычная пищеварительная система: вместо того чтобы пища двигалась по кишечнику, как у всех людей, у инфузории нет никакого аналога кишечника, а сам «желудок» с пищей отправляется в путешествие по телу. Примерно каждые две минуты у туфельки образуется новая пищеварительная вакуоль.


Страница: