Происхождение и принципы эволюции между равновесием и нелинейностью
Рефераты >> Биология >> Происхождение и принципы эволюции между равновесием и нелинейностью

Несмотря на большое число экспериментальных подтверждений, мысль о двойственном характере электромагнитного излучения у многих физиков продолжала вызывать сомнения. К тому же в новой теории обнаружились уязвимые места. Например, модель Бора "разрешенные" электронные орбиты ставила в соответствии наблюдаемым спектральным линиям. Орбиты не следовали из теории, а подгонялись, исходя из экспериментальных данных.

Де Бройль первым понял, что если волны могут вести себя как частицы, то и частицы могут вести себя как волны. Он применил теорию Эйнштейна - Бора о дуализме волна-частица к материальным объектам. Волна и материя считались совершенно различными. Материя обладает массой покоя. Она может покоиться или двигаться с какой-либо скоростью. Свет же не имеет массы покоя: он либо движется с определенной скоростью (которая может изменяться в зависимости от среды), либо не существует. По аналогии с соотношением между длиной волны света и энергией фотона де Бройль высказал гипотезу о существовании соотношения между длиной волны и импульсом частицы (массы, умноженной на скорость частицы). Импульс непосредственно связан с кинетической энергией. Таким образом, быстрый электрон соответствует волне с более высокой частотой (более короткой длиной волны), чем медленный электрон. В каком обличье (волны или частицы) проявляет себя материальный объект зависит от условий наблюдения.

С необычайной смелостью де Бройль применил свою идею к модели атома Бора. Отрицательный электрон притягивается к положительно заряженному ядру. Для того чтобы обращаться вокруг ядра на определенном расстоянии, электрон должен двигаться с определенной скоростью. Если скорость электрона изменяется, то изменяется и положение орбиты. В таком случае центробежная сила уравновешивается центростремительной. Скорость электрона на определенной орбите, находящейся на определенном расстоянии от ядра, соответствует определенному импульсу (скорости, умноженной на массу электрона) и, следовательно, по гипотезе де Бройля, определенной длине волны электрона. По утверждению де Бройля, "разрешенные" орбиты отличаются тем, что на них укладывается целое число длин волн электрона. Только на таких орбитах волны электронов находятся в фазе (в определенной точке частотного цикла) с самими собой и не разрушаются собственной интерференцией.

В 1924 г. де Бройль представил свою работу "Исследования по квантовой теории" ("Researches on the Quantum Theory") в качестве докторской диссертации факультету естественных наук Парижского университета. Его оппоненты и члены ученого совета были поражены, но настроены весьма скептически. Они рассматривали идеи де Бройля как теоретические измышления, лишенные экспериментальной основы. Однако по настоянию Эйнштейна докторская степень ему все же была присуждена. В следующем году де Бройля опубликовал свою работу в виде обширной статьи, которая была встречена с почтительным вниманием. С 1926 г. он стал лектором по физике Парижского университета, а через два года был назначен профессором теоретической физики Института Анри Пуанкаре при том же университете.

На Эйнштейна работа де Бройля произвела большое впечатление, и он советовал многим физикам тщательно изучить ее. Эрвин Шредингер последовал совету Эйнштейна и положил идеи де Бройля в основу волновой механики, обобщившей квантовую теорию. В 1927 г. волновое поведение материи получило экспериментальное подтверждение в исследованиях Клинтона Дж. Дэвиссона и Лестера Х. Джермера, работавших с низкоэнергетическими электронами в Соединенных Штатах, и Джорджа П. Томсона, использовавшего электроны большой энергии в Англии. Открытие связанных с электронами волн, которые можно отклонять в нужную сторону и фокусировать, привело в 1933 г. к созданию Эрнстом Руской электронного микроскопа. Волны, связанные с материальными частицами, теперь принято называть волнами де Бройля.

В 1929 г. "за открытие волновой природы электронов" де Бройль был удостоен Нобелевской премии по физике.

Де Бройль продолжил свои исследования природы электронов и фотонов. Вместе с Эйнштейном и Шредингером он в течение многих лет пытался найти такую формулировку квантовой механики, которая подчинялась бы обычным причинно-следственным законам. Однако усилия этих выдающихся ученых не увенчались успехом, а экспериментально было доказано, что такие теории неверны. В квантовой механике возобладала статистическая интерпретация, основанная на работах Нильса Бора, Макса Борна и Вернера Гейзенберга. Эту концепцию часто называют копенгагенской интерпретацией в честь Бора, который разрабатывал ее в Копенгагене.

В 1933 г. де Бройль был избран членом Французской академии наук, а в 1942 г. стал ее постоянным секретарем. В следующем году он основал Центр исследований по прикладной математике при Институте Анри Пуанкаре для укрепления связей между физикой и прикладной математикой. В 1945 г., после окончания второй мировой войны, Луи де Бройль и его брат Морис были назначены советниками при французской Высшей комиссии по атомной энергии. После успешного обнаружения волновых свойств у электронов были проведены сложнейшие опыты по их обнаружению у атомов и молекул (Германия). Так как длина волны де Бройля равна, то у больших частиц она существенно меньше, но Штерн ее измерил. Впоследствии дифракционные, а значит, и волновые свойства были обнаружены у атомных и молекулярных пучков.

5. Какова специфика микромира по сравнению с изучением мега – и макромира. Поясните принципы соответствия и дополнительности?

Микромир — невидимый мир микрообъектов: атомов, электронов, нейтронов, протонов и пр. Он не может быть описан понятиями и принципами классической физики, которые в некоторой мере соответствуют наглядным представлениям (как в гл. 5). Классическая физика признает наличие материи как в виде вещества, так и поля. Но она не допускает объектов, обладающих свойствами и поля, и вещества. Подчеркивая кажущуюся противоречивость свойств микрообъектов, у которых эти свойства дополняют друг друга, Н. Бор выдвинул принцип дополнительности (1927).

Естествознание исследует органическую и неорганическую природу на Земле и во Вселенной. Сфера исследования включает объекты микро-, макро- и мегамиров

Границы применимости существуют у каждой теории. Так, классическая механика описывает движение макроскопических тел при скоростях, существенно меньших скорости света. Эти границы выяснились только после создания СТО — релятивистская механика расширила классическую на случай больших скоростей. Ценность механики Ньютона при этом не уменьшилась — для малых скоростей тел (по сравнению со скоростью света) поправки малы. При создании квантовой механики было важно строить новую теорию так, чтобы соотношения между величинами были аналогичны классическим, т. е. каждой классической величине нужно было поставить в соответствие квантовую, а потом найти соотношение между квантовыми величинами, пользуясь классическими законами. Такие соответствия можно было найти только из операций измерения.


Страница: