Происхождение и принципы эволюции между равновесием и нелинейностью
Если добиться испарения жидкого гелия, можно достичь температур порядка 1 К. Для получения более низких температур используют магнитные свойства веществ, обусловленные наличием спина электрона. Движущиеся электроны, так как каждый электрически заряжен, порождают магнитные поля, а наличие спина приводит к возникновению магнитного поля, и каждый электрон подобен маленькому полосовому магниту. Но в отличие от него электрон во внешнем магнитном поле может иметь только две ориентации («вверх» и «вниз») как объект квантовой природы. У большинства веществ спины электронов скомпенсированы и не создают магнитного поля, у парамагнитных — они не скомпенсированы, но без магнитного поля имеют одинаковое число спинов, ориентированных «вверх» и «вниз». Различным ориентациям полосового магнита во внешнем поле сопоставляют определенное значение энергии, то же — и для двояко ориентированных спинов. Пусть в присутствии поля ориентации «вверх» соответствует большая энергия. Если с увеличением магнитного поля отношение чисел электронов со спинами «вверх» и «вниз» осталось неизменным, значит, система обладает бесконечно высокой температурой. Итак, если два состояния отличаются по энергиям и одинаково «заселены», можно сказать, что система обладает бесконечной температурой.
Зафиксировав этот общий вывод, приложим внешнее магнитное поле к парамагнитному образцу, находящемуся в контакте с термостатом. Возникает отличие между по-разному ориентированными спинами, так как система была «бесконечно нагрета» и «перевороту» спинов вниз будет соответствовать переход части энергии в термостат. В результате число спинов, ориентированных «вниз», возрастет, они не будут скомпенсированы, система приобретет магнитный момент. Этот процесс, соответствующий стремлению к рассеянию энергии, называют изотермическим намагничиванием. Если теперь нарушить тепловой контакт с окружающей средой и повести процесс на следующем этапе адиабатически, потери энергии уже не будет. Приступим к адиабатическому размагничиванию образца. В отсутствие внешнего магнитного поля спины электронов практически с равными вероятностями могут быть ориентированы как по полю («вниз»), так и против него («вверх»). Энтропия системы спинов растет, хотя у образца в целом она не меняется, т.е. у системы атомов, находящихся в тепловом движении, энтропия понизилась, тепловое движение стало более упорядоченным, снизилась интенсивность теплового движения атомов (Т). Внешний наблюдатель отметил понижение температуры, а система электронных спинов выступила «холодильником», откачав под действием магнитного поля энергию от атомов в окружающее пространство.
Явление сверхтекучести наблюдали и раньше, отмечая странное поведение гелия при температурах около 2 К, но только П.Л. Капица подробно исследовал и описал его. Эту «странность» в поведении гелия объяснил Л.Д. Ландау (1941) — необычность гелия в том, что жидкий гелий существует в двух формах. В области температур от 4,2 до 2,18 К (так называемая -точка) он ведет себя как классическая жидкость — это гелий-I. Ниже-точки он состоит как бы из двух жидкостей: одна ведет себя как обычная (гелий-I), другая проявляет свойства сверхтекучести — проводит теплоту без потерь, т.е. ее теплопроводность равна бесконечности, не оказывает сопротивления течению, или имеет нулевую вязкость, — это гелий-П. В -точке происходит фазовый переход между двумя состояниями гелия. Относительное количество каждой из компонент гелия можно определить измерением силы, действующей на предмет, движущийся в жидкости. Оно зависит от температуры, и опыты показали, что при температурах ниже 1 К практически весь гелий находится в сверхтекучем состоянии.
Итак, атомы сверхтекучего гелия ведут себя согласованно, как единое целое, беспорядка в этой системе нет, энтропия равна нулю. Невозможно сообщить какой-то части сверхтекучего гелия теплоту — все его атомы одинаково подвержены воздействию. Невозможен и обмен энергией между атомами — все они в самом низком состоянии, и вязкость среды равна нулю.
Явление сверхпроводимости было открыто при исследованиях в области низких температур, первоначально имевших чисто практическую направленность и приведших к многим крупным открытиям. В 1911 г. Камерлинг-Оннес обнаружил, что при температуре 7,2 К сопротивление свинцового проводника внезапно снизилось в миллионы раз и практически исчезло. Затем он открыл удивительный макроэффект скачкообразного исчезновения электрического сопротивления ртути, охлажденной до температуры 4,15 К.
Это странное явление и получило название сверхпроводимости. В одном из экспериментов в сделанном из чистого свинца кольце был наведен ток в несколько сотен ампер. Через год оказалось, что ток все еще продолжает идти в кольце, и величина его не изменилась, т. е. сопротивление свинца было равно нулю! Этот макроэффект возникновения сверхпроводимости долгое время оставался не объясненным, но постепенно расширялся круг веществ, способных к нему при низких температурах. Среди них — свинец, ниобий, ванадий, алюминий, олово, титан, молибден и ряд других металлов. Сейчас известны многие элементы и сплавы, которые при низких температурах обладают сверхпроводящими свойствами. Электротехников такое открытие сначала окрылило, но надежды на создание электрических машин без сопротивления оказались преждевременными. Проблема была не только в сложности охлаждения до столь низких температур, но и в возникновении вокруг проводника с большим током сильного магнитного поля, стремящегося нарушить сверхпроводимость. Подбирали специальные сплавы, на которые бы магнитное поле не влияло. Более того, в 30-е гг. немецкие физики В.Мейснер и Р.Оксенфельд нашли, что вещество, приобретающее свойства сверхпроводимости, способно вытеснять образующееся в нем магнитное поле. Но и вытесненное магнитное поле остается помехой сверхпроводимости. Выяснилось, что состояния сверхпроводимости и магнитной проницаемости являются взаимно исключающими. Эффект Мейснера был использован в 1945 г. в знаменитом опыте Аркадьева — над чашей, изготовленной из сверхпроводящего вещества и охлажденной до температуры ниже критической, парил магнит. Он поддерживался в таком необычном состоянии, так как вытесненное магнитное поле из сверхпроводника уравновешивало вес обычного магнита.
3. Опишите модель реального газа. К каким состояниям газа она применяется? Какая температура и плотность называется критической? Каковы особенности сжижения газов в естественных и искусственных условиях?
Модель реального газа, предложенная Ван-дер-Ваальсом (1873), отличалась от модели идеального газа учетом объема самих молекул и их взаимодействия. Последний фактор несколько уменьшает давление — каждая молекула при столкновении как бы тормозится притяжением соседних. Так появилось новое уравнение состояния, которое получило имя автора.