Проблемы использования генетически модифицированных организмов
Рефераты >> Биология >> Проблемы использования генетически модифицированных организмов

Разработка технологии производства искусственного инсулина является поистине триумфом генетики. Сначала с помощью специальных методов определили строение молекулы этого гормона, состав и последовательность аминокислот в ней. В 1963 году молекулу инсулина синтезировали с помощью биохимических методов. Однако осуществить в промышленном масштабе столь дорогостоящий и сложный синтез, включающий 170 химических реакций, оказалось сложно.

Ученым удалось осуществить в клетках E. coli биосинтез молекулы проинсулина, а не только ее отдельных цепей. Молекула проинсулина после биосинтеза способна соответствующим образом преобразовываться (формируются дисульфидные связи между цепями А и В), превращаясь в молекулу инсулина. Эта технология имеет серьезные преимущества, поскольку различные этапы экстракции и выделения гормона сведены к минимуму. При разработке такой технологии была выделена информационная РНК проинсулина. Используя ее в качестве матрицы, с помощью фермента обратной транскриптазы синтезировали комплементарную ей молекулу ДНК, которая представляла собой практически точную копию натурального гена инсулина. После "пришивания" к гену необходимых регуляторных элементов и переноса конструкции в генетический материал E. coli стало возможным производить инсулин на микробиологической фабрике в неограниченных количествах. Его испытания показали практически полную идентичность натуральному инсулину человека. Он намного дешевле препаратов животного инсулина, не вызывает осложнений.

Этот пример можно продолжить. Следует отметить, что в настоящее время технология рекомбинантных ДНК позволяет получать более дешевые и безопасные вакцины для лечения опаснейших инфекционных заболеваний (гепатита, полиомиелита и др.). Во многих случаях получение подобных вакцин традиционными методами попросту невозможно. На основе генно-инженерных биотехнологий созданы более совершенные методы диагностики и лечения болезней человека. Именно с генетической инженерией человечество связывает свои надежды на решение проблемы лечения практически неизлечимых пока болезней: рака, СПИДа, шизофрении, болезни Альцгеймера, наследственных болезней: талассемии, болезни Хантингтона, фиброзного цистита и др.

Несмотря на впечатляющие достижения генетической инженерии в области медицины, наибольший резонанс в обществе, однако, вызвало применение генетически модифицированных организмов для производства сельскохозяйственной продукции.

Любой новый, незнакомый продукт питания воспринимается с подозрением, возрастающим в случаях, когда распространяются слухи об опасности его для здоровья. Хотя в свое время бушевали страсти и вокруг обычных, но новых на то время для европейцев растительных продуктов - картофеля, кофе, кукурузы. Срабатывает принцип принятия мер предосторожности: если продукта не знаешь, лучше воздержаться от его потребления.

Сегодня о перспективах выращивания генно-инженерных сортов красноречиво свидетельствуют цифры, характеризующие их долю в общей площади под конкретной культурой. Для сои эти цифры составляет 55%, для хлопка - 21%, рапса - 16% и для кукурузы - 11%. В целом для четырех этих культур площади, занятые трансгенными сортами, составляют четвертую часть. Только в 2003 году около 7 млн. фермеров из 18 стран мира на 67,7 млн га земли (15 % всех площадей пригодных для земледелия) выращивали ГМ-растения, в настоящее время специалисты называют цифру 85 млн. га. Так, 42,8 млн гектаров (63% общей площади) приходится на США, далее следуют Аргентина - 13,9 млн гектаров (21%), Канада - 4,4 млн (6%), Бразилия - 3 млн (4%), Китай - 2,8 млн (около 4%) и Южная Африка - 0,4 млн гектаров (около 1%). На эти 6 стран приходится 99% всех посевных площадей трансгенных культур. ГМО выращивают также в Индии, Австралии, Испании, Румынии, Болгарии, Германии, Мексике, Уругвае, Колумбии, Гондурасе, на Филиппинах и в Индонезии, всего в 18 странах, заметную долю которых составляют развивающиеся страны.

Что же заставляет миллионы фермеров на всех континентах выращивать именно генно-инженерные сорта растений? Прежде всего, конечно же, рост доходов за счет снижения издержек производства и увеличения продуктивности растений. Так, только в 2002 году трансгенные сорта дали сельскохозяйственной продукции на 1,8 млрд тонн больше, чем обычные на тех же площадях, при этом пестицидов использовано на 21 тыс. тонн меньше, а доходы увеличились на 1,5 млрд долларов США.

Кроме финансовой прибыли выращивание ГМО несет ощутимые социальные и экологические выгоды. Сокращение обработки полей пестицидами и отказ от вспашки уменьшают интенсивность эксплуатации сельскохозяйственной техники и соответственно расход топлива и выбросы углекислого газа в атмосферу. Благодаря использованию менее вредных для окружающей среды гербицидов снижается химическая загрязненность воды и почвы. Предотвращается эрозия почвы, поскольку использование генетически модифицированных растений, устойчивых к гербицидам, позволяет перейти на щадящий беспахотный метод обработки почвы. Это, а также использование сортов с избирательной устойчивостью к насекомым-вредителям в условиях снижения интенсивности применения инсектицидов увеличивает биоразнообразие. На полях, занятых трансгенными сортами, отмечено увеличение численности популяций птиц, полезных насекомых.

Одной из основных проблем сельскохозяйственного производства является борьба с сорняками.

В индустриально развитых странах наряду с агротехническими мероприятиями (обработка почвы) для этих целей широко применяются гербициды, то есть химические препараты, способные тотально или избирательно подавлять рост растений.

Разработаны два способа использования гербицидов. Их применяют перед посадкой или севом растений, внося в почву либо опрыскивая тронувшиеся в рост сорняки. Однако этот способ не может в полной мере решить проблему, поскольку сорняки появляются и после всходов основной культуры, и в ходе всего периода вегетации. Кроме того, вносимые в почву гербициды, как правило, длительное время разлагаются, загрязняя окружающую среду.

Другой способ - обработка гербицидами вегетирующих растений. Он более эффективен, поскольку позволяет защищать посевы в течение всего сезона. Но при использовании гербицидов тотального действия возникают серьезные проблемы защиты культурных растений, не устойчивых к этим гербицидам. Для этого созданы специальные приспособления, позволяющие смачивать гербицидом более высокие сорные растения, не затрагивая культурные. Эта процедура значительно упрощается, если в распоряжении растениевода имеются сорта растений, устойчивые к используемому гербициду. С помощью традиционной селекции вывести такие сорта весьма сложно. В частности, не существует сортов сельскохозяйственных растений, толерантных к наиболее широко используемым гербицидам тотального действия: глифосату и глюфозинату.

Генетическая инженерия эту проблему решает довольно просто. Достаточно перенести в генетический материал растения нужный ген от устойчивых к гербицидам микроорганизмов. Ученые, изучая механизм действия гербицидов, выяснили, что чаще всего они воздействуют на один какой-либо важный для метаболизма растений фермент, связываясь с ним и таким образом ослабляя его активность. Это приводит к серьезным нарушениям роста и развития обработанных гербицидом растений, и они погибают. Среди бактерий легко можно обнаружить устойчивые генотипы, высевая их на питательную среду, в которую добавляют гербицид.


Страница: