Получение трансгенных животных
Наиболее широкое применение для получения трансгенных животных нашли векторные системы на основе YAC (обзоры Montoliuetal. 1993, Jakobovits, 1994, Peterson, 1997, Peterson etal 1997) YAC- эукариотические клонирующие векторы, способные к стабильному сохранению геномных фрагментов ДНК длиной более 1 миллиона п.о. [Burke., 1987]. Они представляют собой линейные фрагменты ДНК, содержащие все необходимые элементы для их сохранения в клетках дрожжей в виде искусственных хромосом. Первые результаты успешного использования YACs в экспериментах по трансгенезу на мышах были получены в 1993 году [Jakobovits et a/., 1993, Schedl et a/., 1993, Strauss etal., 1993].
Для введения YACs в эмбрионы мышей нашли применение три различных подхода: пронуклеарная микроинъекция очищенной в геле YAC-ДНК [Schedl et a/., 1993], липофекция YAC-ДНК в эмбриональные стволовые клетки [Strauss et a/., 1993] и слияние дрожжевого сферобласта с эмбриональными стволовыми клетками [AtoboWte ef a/., 1993). Исследование экспрессии YACs у различных линий трансгенных мышей выявило зависимость уровня экспрессии от числа копии трансгена. С другой стороны, уровень экспрессии не зависел от позиционного эффекта
В то время, как YAC-технологии широко используются для получения трансгенных мышей [обзоры Peterson et al., 1997, Giraldo and Montoliu, 2001) Несколько исселдователай сообщили об успешном создании YAC-трансгенных сельскохозяйственных животных. Были получены свиньи и крысы посредством ксенотрансплатации и направленной экспрессией рекомбинантных генов в молоко трансгенных животных.
Результаты получения трансгенных животных с использованием YAC.
Вид животных |
Трансген |
Размер |
Цель |
Авторы |
кролик |
Тирозиназа мыши |
250 |
Идентификация регуляторных последовательностей |
Montoliu, 1996 Brem, 1996 |
Кролик |
Аполипопротеин человека |
108 |
Анализ структуры |
Rouy, 1998 |
Свинья |
MCP, CD59, CD46 человека |
420 |
Ксенотрансплантация |
Yanoutsos, Langford, 1996 |
что число молекул YAC, микроинъецируемых в пронуклеус зигот значительно меньше, чем при использовании плазмидных конструкций (это обусловлено большим размером YAC), общая эффективность получения трансгенных сельскохозяйственных животных с использованием векторов на основе УАС практически не отличается от результатов, полученных с использованием стандартных генных конструкций. Так, Brem с соавторами [1996\, используя концентрации YAC-ДНК 1-4 нг/мкл, получили 7,4% трансгенных кроликов, что соответствовало общей эффективности 0,74%. Roue с соавторами инъецировали в пронуклеус зигот кроликов раствор YAC в концентрации 1 нг/мкл и достигли степени интеграции 11,8% при общей эффективности 0,71%. Таким образом, размер инъецируемой ДНК не оказывал существенного влияния на эффективность получения трансгенных животных.
Было установлено, что при микроинъекции YAC в пронуклеос зигот животных часто происходит интеграция в геном только части молекулы. Причиной может быть механическое повреждение молекул ДНК большой длины в ходе приготовления раствора ДНК и микроинъекции в пронуклеос. Чтобы прекратить повреждение добавляют полиамины, которые формируют комплексы с ДНК и стабилизируют ее посредством образования компактных структур.
Не смотря на огромные преимущества векторов на основе YAC , они имеют ряд недостатков, выражающихся в определенных трудностях лри создании и подготовке YAC-конструкций. К ним относятся химеризм инсерции (более 50% клонов в YAC библиотеке), нестабильность инсерции, перестройки и потенциальная контаминация эндогенными дрожжевыми хромосомами, что затрудняет их эффективную очистку. С целью исключения таких проблем были созданы другие типы векторов на основе искусственных хромосом, такие как клоны Р1-фага, BAC – "bacterial artificial chromosome", PAC – "P1 bakteriophage-derived artificial chromosome".
Клонирующая система бактериофага Р1 может эффективно сохранять инсерции гетерологичной ДНК размером 70-100 т.п.о. [Stemberg, 1999].
Наряду с YACs BACs используются для выполнения широкого спектра фундаментальных исследований, включающего изучение мутаций, исследование функции и действия генов in vivo, идентификация и анализ регулярных последовательностей, находящихся на значительном удалении от структурного гена. Потенциальные возможности BACs нашли также применение для повышенной экспрессии рекомбинантных белков в молочной железе трансгенных животных [Stinnakre et al., 1999, Zuelke, 1998].
3. ПЕРСПЕКТИВЫ ГЕННО-ИНЖЕНЕРНЫХ РАБОТ В ЖИВОТНОВОДСТВЕ
Развитие биотехнологии сельскохозяйственных животных, в том числе генная инженерия, открывает новые возможности развития животноводства. Уже имеющиеся результаты по получению трансгенных животных говорят о возможности изменения ряда важнейших хозяйственно-ценных признаков. Например, трансгенные животные (свиньи, куры, кролики) с геном гормона роста при равных условиях характеризуются повышенными темпами роста.
Другим важнейшим направлением генной инженерии является получение трансгенных особей с интегрированными в геном генными конструкциями, связанными с усилением иммунитета животных к инфекционным заболеваниям.
Третьим актуальным направлением генной инженерии животныж является получение животных продуцентов биологически активных веществ, необходимых в медицине, ветеринарии и технологии переработки продуктов животноводства. Многие биологически активные вещества не могут производиться традиционными методами в достаточных количествах и с желательным качеством. Существует огромный коммерческий интерес к производству этих белков. В сыроделии существует значительный дефицит молокосвертывающих энзимов, в частности, химозина, необходимого для получения высококачественных твердых сортов сыра. Первым экземпляром трангенного животного стала мышь, размерами вдвое превосходящая обычную особь в нее был введен ген, синтезирующий гормон роста крысы. И ученых сразу заинтересовала возможность трансгенеза у сельскохозяйственных животных. Направление, связанное с получением из трансгенных сельских животных человеческих белков уже приближается к стадии коммерциализации. Ученые небезуспешно пытаются синтезировать человеческие белки в бактериях и дрожжах. Но это дорого и технически сложно: из бактериальных культур не всегда удается выделить чистый белок. К тому же некоторые белки невозможно получить в бактериях в силу громоздкости генов, определяющих их синтез. Биореактор в виде коровы или овцы лишен этих недостатков, и он гораздо производительнее, а конечный продукт (белок) получается в десятки раз дешевле. Но началось все опять-таки с мыши. В 1987 году в США вывели трансгенных мышей, в молоке которых содержался тканевый плазмино-генный активатор, способствующий рассасыванию тромбов в человеческих сосудах. После этого успеха направление заинтересовало крупный капитал (рынок лекарственных белков оценивается приблизительно в 10 млрд. долларов), и в надежде на эффективность новой технологии на будущем рынке начали внедряться биотехнологические гиганты, активно инвестируя в НИОКР. За неполные десять лет, прошедшие с американского достижения, от трансгенных коз, овец, свиней, кроликов и даже коров было получено семнадцать лекарственных белков. Причем десять из этих белков выделялись с молоком в приличной концентрации - около одного грамма на литр молока. Это большое количество, поскольку для курса лечения некоторых болезней требуется всего несколько миллиграммов. А сейчас таким способом научились синтезировать гораздо больше белков. Как минимум три препарата, полученных от трансгенных животных, проходят сегодня последние клинические испытания.