Основные подходы к первичной обработке биологического сырья. Сепарация, осаждение, экстракция
Мембранные материалы:
Гидрофобные полимерные мембраны: политетрафторэтилен (тефлон), поливинилденфторид, полипропилен.
Гидрофильные полимерные мембраны: эфиры целлюлозы, поликарбонаты, полисульфон, полиимид, алифатический полиамид.
Керамические мембраны: оксид алюминия, оксид циркония
Таблица 2. Основные параметры мембранных процессов и применение.
Назва-ние про-цесса |
Мембра-ны |
Толщи-на (мкм) |
Размер пор |
Мембра-нные метариа-лы |
Движущая сила процесса |
Принцип разделения |
Применение |
Микро-фильт- рация |
Асиммет-ричные или симмет-ричные, пористые |
10 – 150 |
0,05 – 10 мкм |
Полимерные и керамические |
Давление (<2 бар) |
Ситовой механизм |
В аналитических целях, стерилизация (пища, лекарственные препараты), ультрачистая вода для полупроводников, осветление напитков, концентрирование клеток и мембранные биореакторы (биотехнология), плазмофорез (медицина) |
Ультрафильтрация |
Пористые асимметричные |
150 |
1 – 100 нм |
Гидрофильные полимерные и керамические |
Давление (1 - 10 бар) |
Ситовой механизм |
Молочная промышленность (обработка молока, сыворотки, сыроделие), пищевая промышленность (извлечение крахмала, белков), металлургия (разделение эмульсий масла в воде, извлечение красителей), текстильная промышленность (извлечение индиго), фармацевтическая промышленность (извлечение ферментов, антибиотиков и жаропонижающих препаратов). |
Обратный осмос |
Асимметричные или композиционные |
Подложка 150 мкм, верхний слой 1 мкм. |
<2 нм |
Триацетат целлюлозы, ароматические полиамиды, полиуретановые эфиры |
Давление (15 - 20 бар) солоноватая вода; (40 - 80 бар) морская вода |
Растворение - диффузия |
Обессоливание солоноватых вод и морской воды, производство ультрачистой воды (электронная промышленность), концентрирование пищевых соков и сахара (пищевая промышленность), концентрирование молока (молочная промышленность) |
Пьезодиализ |
Мозаичные мембраны с чередованием катионных и анионообменных областей |
Несколько сот мкм |
непористые |
Катионо-анионообмен-ные смолы |
Давление (до 100 бар) |
Ионный транспорт |
Концентрирование солей. |
Газоразделение |
Композиционные или асимметричные с верхним слоем из эластомера или стеклообразного полимера |
Подложка 150 мкм, верхний слой 0,1 - 5 мкм. |
Непористые или с порами <1 мкм |
Эластомеры: полидиметилсилоксан, полиметилпентен. Стеклообраз-ные полиме-ры: полиимиды, поли-сульфон |
Давление над мембраной до 100 бар, или вакуум после мембраны |
Механизм растворение диффузи (непористые мембраны); Кнудсеновский поток (пористые мембраны) |
Извлечение водорода или гелия, СН4/СО2, Н2S |
3. Центрифугирование
Разделение веществ с помощью центрифугирования основано на разном поведении частиц в центробежном поле.
Скорость седиментации зависит от центробежного ускорения (G), прямо пропорционально угловой скорости ротора (w, рад*с-1) и расстоянию между частицей и осью вращения (r, см):
G=w2 r.
При перечислении условий разделения частиц указывают скорость вращения и радиус вращения ротора, а также время центрифугирования. Центробежное ускорение обычно выражают в единицах g, рассчитанных из среднего радиуса вращения (rсред) столбика жидкости в центрифужной пробирки (т.е. расстояния от оси вращения до середины столбика жидкости).
Скорость седиментации сфериченских частиц зависит не только от центробежного ускорения, но и от плотности и радиуса самих частиц и вязкости среды суспендирования. Время, необходимое для осаждения сферической частицы в жидкой среде от мениска жидкости до дна центрифужной пробирки, обратно пропорционально скорости седиментации и определяется следующим уравнением:
t=9/2*h*(2 w2 r2ч(rч-r))*Ln(rд/ rм),
где t – время седиментации, h - вязкость среды, rч – радиус частицы, rч-плотность частицы, r - плотность среды, rд – расстояние от оси вращения до мениска жидкости, rм - расстояние от оси вращения до дна пробирки.
Дифферинциальное центрифугирование. Этот метод основан на различиях в скорости седиментации частиц, отличающихся друг от друга размерами и плотностью. Разделяемый материал центрифугируют, осадок отделяют от надосадочной жидкости, а надосадочную жидкость центрифугируют при большем центробежном ускорении.
Зонально – скоростное центрифугирование. Исследуемый образец наслаивается на поверхность раствора с непрерывным градиентом плотности. Затем центрифугируют до тех пор, пока частицы не распределятся вдоль градиента в виде дискретных зон или полос.
Изопикническое центрифугирование. Образец наслаивается на поверхность раствора с непрерывным градиентом плотности, охватывающим диапазон плотностей всех компонентов смеси. Центрифугирование проводят до тех пор, пока плавучая плотность частиц не сравняется с плотностью соответствующих зон, т. е пока не произойдет разделение частиц по зонам.
Равновесное центрифугирование в градиенте плотности. Растворенное вещество и растворитель сначала распределяются по всему объему равномерно. В ходе центрифугирования устанавливается равновесное распределение концентрации, а следовательно, и плотности. Под действием центробежного ускорения молекулы вещества перераспределяются, собираясь в виде отдельной зоны в части пробирки с соответствующей им плотностью.