Нейрохимические основы памяти
Рефераты >> Биология >> Нейрохимические основы памяти

Так обстоит дело с возможностью хранения информации в виде фиксированных межнейронных связей. Попытаемся теперь ответить на вопрос, возможно ли запасание информации в структуре макромолекул с точки зрения их информационной емкости. Сопоставим данные о количестве информации, которую мозг человека может накапливать в течение жизни, с информационной емкостью линейных полимеров, используемых системами генетической памяти.

Четыре вида нуклеотидов могут образовывать 43 = 64 варианта триплетов. Информация, содержащаяся в одном триплете, следовательно, должна была бы составить log264 = 6 бит. На самом деле, поскольку код вырожден и некоторым триплетам соответствуют одни и те же аминокислоты, информация, содержащаяся в триплете, оказывается меньше и составляет приблизительно 4 бит. Информационное содержание одного аминокислотного остатка в полипептиде, казалось бы, должно быть таким же, как в триплете, но на самом деле оно оказывается меньше из-за различной частоты встречаемости аминокислот и при вычислении по формуле Шеннона составляет примерно 2 бит.

Следовательно, при информационном содержании памяти 109 бит для хранения этой информации требуется 2,5-Ю11 Д информационной РНК, около 5-10й Д ДНК и около 5 1010 Д белка. Согласно данным Хидена, в цитоплазме большого нейрона содержится 650 пг, а в ядре — 30 пг РНК, что равно, соответственно, 4-Ю14 и 1,8-1013 Д. В других нейронах содержание РНК меньше, но все равно оно колеблется около Ю13 Д. Это в несколько сот раз больше, чем требуется для обеспечения ДП.

Количество ДНК в нейронах уступает содержанию РНК. ДНК находится в основном в ядрах и составляет там -6-Ю12 Д, но и эта величина оказывается приблизительно в десять раз больше величины, требуемой для обеспечения памяти. Другими словами, десятой доли количества ДНК или сотой доли РНК, содержащейся в нейроне, достаточно для хранения нейрологической памяти, которую человек фиксирует в течение жизни.

Доля белка, содержащегося в нейронах, необходимая для фиксации энграммы, оказывается еще меньше.

Итак, биополимеров одного нейрона с избытком достаточно для обеспечения как ограниченной во времени, так и долговременной памяти мозга. Более того, количество ДНК в хромосомах нейрона таково, что, следуя цепи рассуждений, можно дойти до предположений о генетической передаче какой-то доли приобретенной нейрологической информации. Однако такое утверждение противоречит экспериментальным данным и теоретическим представлениям современной генетики.

Приведенные расчеты следует оценивать лишь как доказательство заведомой, колоссальной избыточности информационной емкости макромолекул клеток мозга. Очевидно также, что только из оценок информационной емкости макромолекул не вытекает необходимость существования в мозге огромного количества нервных клеток. Иначе говоря, только с точки зрения количества информации нельзя сделать выбор между гипотезой о том, что память основана на межнейронных взаимодействиях, и гипотезой о непосредственном хранении памяти в биополимерах.

Не решает однозначно вопроса о способе хранения энграммы и тот факт, что ингибиторы синтеза ДНК не подавляют ни фиксацию, ни хранения следа в ДП. Если считать, что в ДП в течение суток включается около 2104 бит информации, то это составит примерно 107 Д вновь синтезируемой ДНК, т.е. всего миллионную долю ДНК, содержащейся в одной нервной клетке. Даже если допустить, что при запоминании синтезируются десятки идентичных молекул ДНК, то и в этом случае такую долю можно не уловить существующими аналитическими методами и не отметить нарушения запоминания такими ингибиторами, как, например, цитозинарабинозид, степень торможения синтеза ДНК которым составляет не намного более 95%.

Таким образом, вопрос о механизме хранения энграммы приходится решать другими методами. Результаты исследований в настоящее время все в большей степени свидетельствуют о предпочтительности гипотезы, согласно которой память хранится в виде структуры межнейронных взаимодействий.

3. Роль нейромедиаторов в регуляции памяти

Ввиду того, что процессы памяти тесно связаны с модификацией синаптических процессов, химические передатчики нервного возбуждения должны играть здесь принципиальную роль. К настоящему времени накоплен большой экспериментальный материал, касающийся значения нейромедиаторов в процессах памяти и обучения. Полученные результаты свидетельствуют о большой значимости основных медиаторов в этих процессах, хотя конкретные формы участия каждого медиатора, по-видимому, зависят от того, какой именно тип информации запоминается.

Так, хотя известно, что способность животных к обучению, в общем, положительно коррелирует с уровнем ацетилхолина и отрицательно — с активностью холинэстеразы в мозге, тем не менее выработка одних навыков сопровождается активацией, а других — снижением активности этого фермента. В большинстве случаев, однако, ацетилхолин способствует выработке условных реакций. Показано, что снижение содержания ацетилхолина в мозге ингибиторами холинацетилазы нарушает обучение, а его повышение ускоряет выработку оборонительных навыков. В ряде исследований показано, что вещества, нарушающие обмен ацетилхолина, вызывают амнезию, а фармакологическая активация ацетилхолиновых рецепторов облегчает и ускоряет обучение и стимулирует извлечение следа из памяти.

Важная роль в регуляции процессов памяти принадлежит системе биогенных аминов мозга. В детальных исследованиях Е.А.Громовой было показано, что при выработке условных реакций с отрицательным подкреплением происходит активация норадренергической системы, а при обучении с положительным подкреплением содержание норадреналина в мозге и скорость его метаболизма снижаются. Умеренная активация норадренергических процессов стимулирует выработку реакций с болевым подкреплением, но чрезмерное увеличение содержания этого медиатора в мозге приводит к нарушению выработки всех условных реакций.

Серотонин, напротив, облегчает выработку и хранение навыков, основанных на положительном подкреплении, и отрицательно влияет на формирование оборонительных реакций. По существующим представлениям норадренергическая и серотонинергическая системы являются в значительной степени антагонистами в отношении процессов памяти, и способность к выработке тех или иных навыков зависит не столько от абсолютного уровня содержания или метаболизма того или иного медиатора, сколько от соотношения активностей этих систем. Так, нарушения, вызванные увеличением содержания серотонина, могут быть компенсированы параллельной активацией норадренергической системы и наоборот. -

По мнению Е.А. Громовой, существует реципрокность серо-тонина и норадреналина в регуляции консолидации следов памяти.

Механизм их действия заключается в свойствах этих медиаторов пролонгировать многократную циркуляцию возбуждения в нейронных системах, связанных соответственно с положительным и отрицательным восприятием информации, что является необходимым для перехода нейродинамической фазы фиксации следа в фазу структурно-химических изменений.


Страница: