Исследование соотношения в мышцах С- и Х-белков в норме и при патологии
Белки семейства тайтина могут участвовать в сборке толстых нитей и стабилизации их структуры. Известно, что С-белок, также как и тайтин (Wang & Wright, 1988), появляется в мышечной клетке на ранних стадиях миофибриллогенеза (Bahler et al., 1985). Имеются также данные о влиянии тайтина, С-белка и Х-белка на формирование миозиновых нитей in vitro (Koretz, 1979; Miyahara & Noda, 1980; Koretz et al., 1982; Вихлянцев 2005). Вероятно, что С-белок (вместе с тайтином) участвует в сборке и стабилизации структуры толстых нитей. Исследования in vitro показали, что Н-белок влияет на связывание С-белка с миозином (Yamamoto, 1984). Показано связывание С-белка и тайтина с актином в условиях in vitro. Предполагается, что физиологическое значение этого связывания в саркомерах скелетных мышц заключается в регуляции актин-миозинового взаимодействия. В экспериментах in vitro показано, что тайтин и С-белок активируют АТФазу актомиозина. Это влияние может быть обусловлено как модифицирующим действием С-белка и тайтина на миозиновый мостик, так и прямым их взаимодействием с актином (Moos et al., 1978, 1980; Moos, 1981; Muhle-Goll et all., 2001; Moolman-Smook et al., 2002; Squire et al., 2003). Х-белок и Н-белок также могут быть вовлечены в процесс мышечного сокращения, ингибируя АТФ-азную активность актомиозина (Yamamoto, 1984, Вихлянцев, 2005). В поддержку предположения о регуляторной роли С-белка в сократительной активности являются данные о фосфорилировании С-белка сердечной мышцы. В ранних исследованиях было показано, что уровень фосфорилирования С-белка в интактном сердце коррелирует со скоростью релаксации мышцы (Hartzell & Glass, 1984). In vitro фосфорилирование сердечного С-белка приводило к снижению его активирующего эффекта на АТФазу АМ (Hartzell, 1985). На основе полученных данных автором было сделано предположение, что С-белок участвует в механизме расслабления сердечной мышцы. Однако результаты дальнейших исследований показали, что фосфорилирование С-белка модулирует процесс сокращения сердечной мышцы, увеличивая доступность миозиновых головок к актину (Weisberg & Winegrad, 1996, 1998; Kunst et al., 2000; McClellan et al., 2001; Kulikovskaya et al., 2003; McClellan et al., 2004; Flashman et al., 2004). Действительно, согласно последним данным фосфорилирование сердечного С-белка приводит к усилению сократительной активности мышцы (Stelzer et al., 2006).
1.3. Белки семейства тайтина в норме, при адаптации и патологии
Структурно-функциональные свойства белков семейства тайтина в норме описаны выше. Эти белки являются важными компонентами сократительного аппарата мышечной клетки, участвуя в построении и стабилизации структуры саркомера. Влияние белков семейства тайтина на АТФазу актомиозина указывает на их важную регуляторную функцию в норме.
Поведение белков семейства тайтина при адаптации рассматривается на примере гибернации (зимней спячки). Показано, что у гибернирующего животного уменьшается площадь поперечного сечения мышечных волокон. Изменения структурно-функциональных свойств миозин-содержащих нитей скелетных мышц вносят вклад в подавление двигательной активности животного при зимней спячке (Лукоянова и др., 1996). В скелетных мышцах гибернирующих животных обнаружено снижение активирующего влияния тайтина и С-белка и увеличение ингибирующего влияния Х-белка на ферментативные и регуляторные свойства миозина (Вихлянцев и др., 2000; 2002).
Поскольку причину развития ДКМП большинство исследователей видит в повреждении сократительных структур миокарда, а условия микрогравитации приводят к "гипогравитационному мышечному синдрому" (Гуровский и др., 1975; Nemirovskaya et al., 2002), становится вполне понятным пристальное внимание исследователей к этим патологическим состояниям. Показано, что пребывание в условиях моделируемой микрогравитации приводит к уменьшению количества тайтина и Х-белка в m. soleus крыс и человека, что, наряду с другими изменениями в мышечном аппарате, будет вносить вклад в развитие "гипогравитационного мышечного синдрома" (Вихлянцев и др., 2006). Увеличение содержания тайтина в миокарде левого желудочка человека при ДКМП приводит к снижению уровня пассивного напряжения одиночных миофибрилл и волокон, что отражается на сократительной функции сердца (Макаренко и др., 2002, Макаренко, 2004).
Данные, полученные при исследовании свойств полифункциональных белков семейства тайтина в норме, при адаптации и заболеваниях дают основание предполагать, что изменения их структурно-функциональных характеристик может вносить вклад в развитие патологических процессов в мышцах. Выяснение роли тайтина, Х-белка, С-белка и Н-белка в патогенезе разных болезней является чрезвычайно актуальной задачей. В данной работе объектом нашего внимания являлись амилоидозы и, в частности, амилоидные свойства этих белков in vitro.
Глава 2. Амилоидозы
2.1. Актуальность проблемы
Амилоидозы – болезни, которые характеризуются отложениями нерастворимых фибрилл белка (амилоидных фибрилл) в разных органах и тканях, образующихся в результате наследственного или приобретенного нарушения сворачивания белков. Амилоидные отложения играют центральную роль в патогенезе болезней, от которых страдают миллионы пациентов (болезнь Альцгеймера, Паркинсона, Дауна, диабет II типа, наследственная амилоидная полинейропатия, системные амилоидозы, прионные амилоидозы и др.) (Uversky & Fink, 2004). Однако, процессы, лежащие в основе аномальной агрегации белка и ее патологического проявления при болезнях, изучены еще недостаточно.
Амилоидоз широко распространен среди многих представителей животного мира. Описаны первичные (идиопатические), вторичные (приобретенные), наследственные и старческие его формы (Виноградова, 1980). Амилоидные отложения могут достигать килограммов (как, например, фибриллярные скопления лизоцима в печени). Они найдены также в сердечной мышце при кардиомиопатиях, миокардитах и в скелетных мышцах при миозитах (Барсуков и др., 2005). При миокардитах (воспалительное поражение сердечной мышцы) амилоид имеет вид россыпи. Возможно тотальное поражение сердца или только предсердий, только желудочков или клапанов. При кардиопатическом амилоидозе амилоид откладывается в эндо-, мио- и эпикарде. Отложения амилоида в сердце приводят к резкому увеличению его размеров (амилоидная кардиомегалия). Оно становиться очень плотным, миокард приобретает сальный вид ("резиновый миокард"). Миозит с включенными тельцами (амилоидами) сопровождается изнурительными мышечными болями. Амилоидные отложения обнаружены в скелетных мышцах, в миокарде, и по ходу межмышечной соединительной ткани, а также в стенках сосудов и нервах. Мышцы становятся плотными, полупрозрачными (Виноградова, 1980).
Уже сейчас амилоидозы – главная причина смерти после сердечно-сосудистых и раковых заболеваний. Диагностика большинства из них посмертная. Генезис этого заболевания, при котором возможно поражение любых органов и тканей и, следовательно, возникновение разнообразной клинической симптоматики, остается до конца не изученным. Возможно, причиной является спонтанное развитие амилоидоза, или наследственная передача болезни. Патогенез амилоидоза не уточнен, клинические проявления весьма пестрые и не всегда четко очерчены, лечение малоэффективно и редко диагностируется при жизни. Выяснение молекулярных механизмов амилоидозов, установление белковой природы депозитов и их свойств, развитие терапевтических методов лечения и предупреждения этих заболеваний, а также разработка их прижизненной диагностики являются актуальными задачами.