Исследование роста микромицетов на различных субстратах
Рефераты >> Биология >> Исследование роста микромицетов на различных субстратах

Участвуя в разложении многих углеродсодержащих веществ растительного опада и древесины в первую очередь трудноразлагаемых полимерных соединений, где грибам принадлежит ведущая роль, они занимают значительное место в круговороте углерода, являясь поставщиками СО2 в атмосферу.

Среди грибов есть организмы, разлагающие жиры и воска, входящие в состав растительных и животных тканей. Это определяется наличием у них ферментов липаз. Наибольшей активностью липолитических ферментов обладают виды Mucor lipolyticus, Rhizopus nigricans, Aspergillus niger, Penicillium verrusum, Penicillium roquefortii. Многие выделены с поверхности растений, являясь эпифитами и способны разлагать также восковые налеты на поверхности растений.

Известна также способность грибов разлагать как алифатические, так и ароматические углеводороды. В этом отношении наибольшей активностью характеризуются грибы рода Aspergillus (Мирчинк, 1988).

Разложение хитина. Хитин постоянно присутствует в почве, достигая десятых долей процентов, входит в состав наружного скелета беспозвоночных животных и клеточных стенок грибов. По ряду физико-химических свойств хитин сходен с целлюлозой, однако наличие в молекуле ацетамидных групп придает ему особо ценные в практическом отношении свойства. Известно, например, что бактериальная хитиназа используется в качестве средства защиты растений от возбудителей болезней. Препарат на основе этого фермента является перспективным экологически безопасным средством биологического контроля за фитопатогенными грибами (Deboer, 1998; Eltarabily, 2000). Микроорганизмы воздействуют на хитин с помощью экзоферментов (хитиназы и хитобиазы), в результате чего образуются хитотриозы и хитобиозы, расщепляющиеся затем до мономеров и N-ацетилглюкозоамина (Шлегель, 1987). Способностью к образованию хитиназы обладают многие бактерии (Актуганов, 2003; Ramirez, 2004). В первую очередь реагируют на присутствие хитина быстрым размножением мицелиальные прокариоты – актиномицеты (Калакуцкий, 1977; Schrempf, 2001). Наличие высокой хитиназной активности микроорганизмов дает возможность извлечения азота и углерода из труднодоступных соединений, каковым является хитин, и, как следствие, включение этих элементов в круговорот почва – атмосфера. Однако проблема разложения хитина в почве до настоящего времени остается недостаточно раскрытой (Манучарова, 2005).

Манучаровой Н. А. с соавторами было проведено исследование хитинолитического прокариотного и эукариотного микробного комплекса в черноземе в ходе сукцессии, инициированной внесением хитина и увлажнением почвы.

Наблюдение за динамикой хитинолитических популяций в ходе сукцессии, инициированной увлажнением почвы и внесением хитина, с помощью люминесцентной микроскопии показало, что численность бактерий, длина мицелия актиномицетов и грибов в варианте с внесением хитина была выше по сравнению с контрольным вариантом (увлажнением почвы без внесения хитина), причем такая закономерность наблюдалась на всех этапах сукцессии. Максимальные значения численности бактерий, длины мицелия грибов и актиномицетов отмечены на 7 – 14-е сутки после начала опыта. На протяжении всего эксперимента биомасса грибов превышала биомассу прокариот как в контрольном варианте, так и в варианте с хитином. Значительное возрастание биомассы эукариот в варианте с хитином по сравнению с контролем отмечалось на 7-е сутки сукцессии, однако к середине сукцессии (14-е сутки опыта) биомасса грибов начала снижаться, что, вероятно, связано с сопряженными процессами отмирания части мицелия и перехода к стадии спороношения.

Наблюдение за динамикой популяций в ходе сукцессии, инициированной увлажнением и внесением хитина в почву, проводимое методом посева, показало, что численность хитинолитических прокариотических микроорганизмов, выделяемых из образцов с добавлением хитина, была выше на всех этапах сукцессии по сравнению с контролем (Манучарова, 2005).

Разрушение грибами нефтепродуктов.В последние десятилетия в связи с возродившимся интересом к процессам микробного превращения углеводородов были обнаружены мицелиальные грибы, деятельность которых приводит к деструкции нефти и ее производных. В настоящее время доказано, что утилизировать нефтепродукты, в том числе различные топлива, во время хранения и транспортировки способны многие виды грибов и бактерий (Андреюк, 1980).

Нефтепродукты как среда обитания грибов характеризуются рядом особенностей: 1) содержат большое количество сравнительно доступного углерода и минимальное – азота при почти недоступном пространственном расположении его в молекуле; 2) в них почти отсутствует доступная активная вода. Это оказывает существенное влияние на синтез de novo грибной клетки.

Вопросы необходимого соотношения C:N у грибов при росте на нефтепродуктах в биохимическом аспекте исследованы еще мало и уровень этих данных уже не отвечает современным представлениям о возможностях грибной клетки. Очевидно, здесь имеет место не только типичный гетеротрофный процесс, но также определенное подобие хемотрофии и автотрофии, причем стадии роста отличаются и специфичны по способности к разным типам трофики. Особенно это проявляется в период формирования репродуктивных структур (Ниязова, 1982; Бабьева, 1983). Спецификой роста грибов на нефтепродуктах является их способность распространяться на поверхности, то есть возможность использовать при этом активную воду из воздуха, а также расти в толще нефтепродуктов, то есть ограничивать свои потребности в воде за счет активной воды самих нефтепродуктов (Евдокимова 1982).

Рост грибов (кладоспориев, пенициллиев, аспергиллов и некоторых других видов и штаммов) в разных нефтепродуктах характеризуется различным типом размещения мицелиальной пленки. Наиболее типичный – на разделе фаз, однако чаще всего наблюдается еще и глубинный рост, при котором развивается не только в толще жидкости – до 20 см. Причем интересно, что рост этих штаммов при определенном соотношении нефтепродуктов и воды мало зависит от высоты слоев смеси, а также воздуха в надсубстратном пространстве. Это свидетельствует о большой возможности мицелиальных грибов выдерживать жесткие условия и приспосабливаться к потреблению необходимых для метаболизма веществ не совсем обычными биохимическими и физиологическими путями.

В настоящее время установлено, что способность окислять углеводороды нефти не является специфической чертой отдельных видов грибов. Это не редкая их особенность, а одна из физиологических функций. Однако, несмотря на большое сходство химических и физических свойств фракций нефтепродуктов, у большинства видов грибов четко проявляется избирательное отношение к их утилизации (Бабьева, 1983).

Разрушение полимерных материалов. Синтез полимеров и создание на их основе материалов, обладающих повышенной стойкостью к факторам окружающей среды и воздействию различных организмов, привел к обострению экологической обстановки из-за накопления больших объемов отходов, содержащих эти соединения в разных отраслях промышленности. В последние десятилетия во многих странах уделяется большое внимание созданию полимерных материалов и их модификаций, утилизация которых возможна под воздействием микробиоты. В качестве добавок к пластификаторам исследователи используют природные компоненты такие, как крахмал, производные целлюлозы, протеин, хитозан и так далее. На основе этих композитных полимеров ряд фирм выпускает пластики для производства изделий разового пользования, упаковки пищевых продуктов, плоских пленок и так далее, которые обладают способностью к биодеградации при компостировании и так далее (Власова, 2001; Фомин, 2001). Состав микроорганизмов, контаминирующих техногенные материалы и способных вызывать их биодеградацию, очень разнообразен как в таксономическом отношении, так и по их физиолого-биохимической активности. Среди них ведущее место занимают представители дейтеромицетов, способные развиваться на обширном сортименте материалов, содержащих соединения как природного происхождения, так и искусственного синтеза (Биоповреждения, 1987; Коваль, 1989).


Страница: