Важнейшие достижения естествознания 19 века
Казалось очевидным, что, если две молекулы построены из одинакового числа одних и тех же атомов и все же обладают различными свойствами, различие коренится в способе расположения атомов внутри молекулы. При большом количестве атомов число возможных вариантов расположения возрастает настолько, что трудно становится решить, какому соединению соответствует какое расположение.
Поэтому проблему строения молекул можно было бы почти сразу отвергнуть как нерешаемую, если бы не появилась возможность упростить ее.
Гей-Люссак и Тенар, работая над цианидом водорода, обнаружили, сто группа CN (цианидная группа) может переходить от соединения к соединению, не разлагаясь на отдельные атомы углерода и азота. Группа из двух или более атомов, способная переходить без изменения из одной молекулы в другую, была названа радикалом.
Короче говоря, становилось ясно, что открыть тайну строения больших молекул можно, лишь установив строение определенного числа различных радикалов. Тогда не составит большого труда построить из радикалов молекулы.
Строение молекул
В 1852 году английский химик Эдуард Франкланд выдвинул теорию, которая позднее стала известна как теория валентности, согласно которой каждый атом обладает определенной способностью к насыщению(или валентностью). Прежде всего с введением понятия «валентность» удалось уяснить различие между атомным весом и эквивалентным весом элементов. Даже в середине XIX века многие химики еще путали эти понятия.
Эквивалентный вес атома равен его атомному весу, деленному на его валентность.
Теория валентности сыграла важнейшую роль в развитии теории химии и в органической химии в особенности. После того, как была построена первая органическая молекула, стало совершенно ясно, почему органические молекулы, как правило, значительно больше и сложнее, чем неорганические.
Согласно представлениям Кекуле, углеродные атомы могут соединяться друг с другом с помощью одной или нескольких из четырех своих валентных связей, образуя длинные цепи. По-видимому, никакие другие атомы не обладают этой замечательной способностью в той мере, в какой обладает ею углерод.
Полезность структурных формул была настолько очевидной, что многие химики-органики приняли их сразу. Они признали полностью устаревшими все попытки изображать органические молекулы как структуры, построенные из радикалов. В результате было признано необходимым, записывая формулу соединения, показывать его атомную структуру.
Русский химик Александр Михайлович Бутлеров использовал эту новую систему структурных формул в разработанной им теории строения органических соединений. В 60-х годах XIX столетия он показал, как с помощью структурных формул можно наглядно объяснить причины существования изомеров.
Основные идеи теории химического строения Бутлеров изложил в докладе «О химическом строении вещества», прочитанном в химической секции Съезда немецких естествоиспытателей и врачей в Шпейере (сентябрь, 1861). Основы этой теории сформулированы таким образом:
1) Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).
2) Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).
3) Свойства веществ зависят от их химического строения.
4) По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы - предвидеть свойства.
5) Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.
Основой теории Бутлерова является идея о порядке химического взаимодействия атомов в молекуле. Этот порядок химического взаимодействия не включает представления о механизме химической связи и физическом расположении атомов. Эта важная особенность теории химического строения позволяет всегда опираться на нее при построении физической модели молекулы.
Установив понятие химического строения, А. М. Бутлеров дал новое определение природы вещества: «химическая натура сложной частицы определяется натурой элементарных составных частей, количеством их и химическим строением».
Таким образом, А. М. Бутлеров первый установил, что каждая молекула имеет определенное химическое строение, что строение определяет свойства вещества и что изучая химические превращения вещества, можно установить его строение.
Взгляды А. М. Бутлерова на значение химических структурных формул вытекают из основных положений его теории. Бутлеров считал, что эти формулы должны быть не «типическими», «реакционными», а конституционными. В этом смысле для каждого вещества возможна лишь одна рациональная формула, на основании которой можно судить о химических свойствах.
Бутлеров впервые объяснил явление изомерии тем, что изомеры — это соединения, обладающие одинаковым элементарным составом, но различным химическим строением. В свою очередь, зависимость свойств изомеров и вообще органических соединений от их химического строения объясняется существованием в них передающегося вдоль связей «взаимного влияния атомов», в результате которого атомы в зависимости от их структурного окружения приобретают различное «химическое значение». Самим Бутлеровым и особенно его учениками В. В. Марковниковым и А. Н. Поповым это общее положение было конкретизировано в виде многочисленных «правил». Уже в XX в. эти правила, как и вся концепция взаимного влияния атомов, получили электронную интерпретацию.
Таким образом Бутлеров открыл путь к планомерному созданию органических соединений, следуя которому органическая химия начинает одерживать одну победу за другой в соревновании с природой за создание материальных ценностей для удовлетворения потребностей людей.
К важным достижениям в строении молекул можно отнести открытие оптических изомеров Пастером и принятие трехмерной модели молекулы.
Периодическая таблица
В истории развития органической и неорганической химии XIX столетия наблюдается любопытная параллель. В первые десятилетия число вновь открытых органических соединений, а также элементов увеличивалось ошеломляюще быстро. В третьей четверти столетия органические соединения были в определенной степени систематизированы благодаря введению структурных формул. До некоторой степени упорядочены были и элементы; однако в начале столетия царил беспорядок.
К 1830 году было открыто 55 различных элементов и такое резкое увеличение списка элементов, которые, вдобавок, сильно отличались по свойствам, озадачило химиков.
Заманчиво было попытаться как-то упорядочить список уже известных элементов.
Главная заслуга в упорядочении элементов принадлежит нашему соотечественнику Дмитрию Ивановичу Менделееву. Открытый им в 1869 году Периодический закон стал самым значительным событием XIX века. В основу Периодического закона Д.И. Менделеев положил атомные массы (ранее - атомные веса) и химические свойства элементов. Расположив 63 известных в то время элемента в порядке возрастания их атомных масс, Д.И. Менделеев получил естественный (природный) ряд химических элементов, в котором он обнаружил периодическую повторяемость химических свойств. Периодический закон в формулировке Д.И. Менделеева звучал так: «Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов». На его основе он составил таблицу, озаглавленную «Опыт системы элементов, основанной на их атомном весе и химическом сходстве». Основываясь на увеличении и уменьшении валентности, Менделеев разбил элементы на периоды. Для того, чтобы выполнялось требование, согласно которому в столбцах должны находится элементы с одинаковой валентностью, Менделеев в одном или двух случаях был вынужден поместить элемент с несколько большим весом перед элементом с несколько меньшим весом. Поскольку этого оказалось недостаточно, Менделеев счел также необходимым оставить в своей таблице пустые места, которые впоследствии должны были заполниться новыми элементами.