Важнейшие достижения естествознания 19 века
Рефераты >> Биология >> Важнейшие достижения естествознания 19 века

Таким образом, концепции классической термодинамики описывают состояния теплового равновесия и равновесные (протекающие бесконечно медленно, поэтому время в основные уравнения не входит) процессы. Термодинамика неравновесных процессов возникает позднее - в 30-х гг. ХХ века.

электромагнитный биология электродинамика физика

Возникновение предпосылок атомной и ядерной физики

Концепции атомной и ядерной физики будут развертываться в ХХ столетии, но события, давшие им толчок, произошли в конце XIX столетия. На стыке XIX и ХХ вв. в науке свершились открытия, заставившие заколебаться сложившуюся картину мира. Представлениям, основанным на классической механике, суждено было уступить место новой, остающейся до сих пор во многом не завершенной картине мира. События, положившие начало процессу смены картины мира, связаны с открытием рентгеновских лучей и радиоактивности (1895-1896гг.), открытием электрона (1897г.), структуры кристалла (1912г.), нейтрона (1932г.), деления ядра атома (1938г.) и т.д., а также с теоретическими работами: квантовой теорией М.Планка (1900г.), специальной теорией относительности А.Эйнштейна (1905г.), атомной теорией Резерфорда - Н.Бора (1913г.), общей теорией относительности А.Эйнштейна (1916г.), волновой механики Л.де Бройля и Э.Шредингера (1923-1926гг.) и т.д. Поскольку в основу изложения развития физических концепций был положен и хронологический принцип, то и научные открытия, происшедшие в конце XIX столетия (хотя главные события, последующие за ними, будут происходить уже в ХХ столетии), целесообразно рассмотреть в русле развития физики конца XIX столетия.

Конец XIX века демонстрировал наличие теории, удовлетворяющей практическим потребностям. Явления электромагнетизма использовались в осветительных и силовых устройствах. Термодинамические концепции привели к созданию двигателя внутреннего сгорания и химических установок. Электромагнитная теория вызвала к жизни радио. Эти достижения были практической реализацией утвердившихся научных знаний, от которых трудно было ожидать чего-то принципиально нового. Так что радикальные сдвиги следовало ожидать в тех областях физики, которые до сих пор находились в тени и в которых наблюдались какие-то явления, не укладывавшиеся в существующие физические концепции. Область физики, занимавшаяся изучением электрических разрядов, оказалась именно такой. Однако проводившиеся с электрическими разрядами в вакууме опыты привели к интересным результатам, а электротехническая промышленность обнаружила потребность в совершенствовании вакуумной техники. Все это усилило интерес к исследованиям в этой области физики.

Первым результатом усиления этого интереса было открытие У. Круксом катодных лучей, которые он назвал лучистой формой материи. Д. Стоней назвал катодные лучи электронами, Ж. Перрен обнаружил у них отрицательный заряд, а Д. Томсон измерил их скорость. Следующим шагом было совершено непредвиденное открытие К.Рентгеном - обнаружение Х-лучей (получивших название рентгеновских), исходивших из катодно-лучевой разрядной трубки. Это открытие, помимо практических перспектив, имело важное значение для других областей физики. Д.Томсон установил, что не только электроны, которые ударялись о какое-либо вещество, порождали рентгеновские лучи, но и последние при ударе о вещество порождают электроны. Это явление, как было установлено впоследствии, было обусловлено фотоэлектрическим эффектом. Тот факт, что электроны могли извлекаться из различных веществ, свидетельствовало о принадлежности их к электрической материи. Поскольку она состояла из отдельных частиц (атомов), то это побудило Д. Томсона обратиться к раскрытию внутренней структуры атома. Существование электрона - заряженной частицы с массой, которая меньше массы атома и которая появляется из вещества при определенных условиях, наводила на мысль о том, что эта частица является структурным элементом атома. А если атом электрически нейтрален, то должен быть структурный элемент и с положительным зарядом.

Первая модель атома, предложенная В. Томсоном и затем Д. Томсоном, включала шарообразное облако положительного заряда, внутри которого находятся электроны, расположенные в этом облаке концентрическими кольцами. Данная модель просуществовала недолго. Но это был первый шаг в раскрытии структуры атома. Следующие модели атома появились уже в ХХ веке (модель Э.Резерфорда и модель Н.Бора).

Открытие рентгеновских лучей было случайным. Открытие радиоактивности, последовавшее вслед за открытием рентгеновских лучей, также оказалось случайным. А.Беккерель пытался установить, не излучаются ли подобные лучи другими телами. Из различных веществ, которыми он располагал, Беккерель случайно избрал соли урана. лучи, исходящие из урана, были радиоактивными, причем получались без каких-либо устройств - они испускались самим радиоактивным веществом. Пьер и Мария Кюри выделили еще более сильные радиоактивные элементы - полоний и радий. Э. Резерфорд, изучая характер радиоактивного излучения, открыл альфа-лучи и бета-лучи и объяснил их природу. М. Планк установил, что атомы отдают энергию не непрерывно, а порциями, т.е. существование предельного количества действия, контролировавшего количественно все энергетические обмены в атомных системах. К. Лоренц создал электронную теорию, синтезировавшую идеи теории поля атомной теории. И хотя первоначально он не употреблял термина "электрон", а говорил о положительно и отрицательно заряженных частицах вещества, открытие радиоактивности и превращения атомов поколебало физические и химические представления XIX века. Это касалось закона неизменных элементов, установленного Лавуазье. Самопроизвольный радиоактивный распад в условиях отсутствия опытных данных о синтезе новых атомов мог истолковываться как односторонний процесс постепенного разрушения вещества во Вселенной. Открытие первой субатомной частицы - электрона - выглядело аргументом в пользу отвергнутых представлений об электрической субстанции. Казалось, что был поставлен под сомнение и закон сохранения энергии. Возникшая ситуация свидетельствовала о том, что новые экспериментальные факты не укладываются в существовавшую физическую парадигму.

Таким образом, обозначились истоки революционных преобразований в физических концепциях. Первый этап этих преобразований начался в конце XIX века. Последующие этапы развертывались уже в XX веке.

Химия XIX столетия

Атомы

XIX век характеризуется развитием химической атомистики. Химическая атомистика родилась из слияния старой натурфилософской идеи об атомах с опытными аналитическими данными о химическом количественном составе веществ. Большой вклад в развитие атомистики внесли Жозеф Луи Пруст, Джон Дальтон, Ж.Л. Гей–Люссак, Амедео Авогадро и др.

Пруст установил, что постоянство соотношений компонентов наблюдается во многих соединениях. Он сформулировал общее правило, согласно которому все соединения содержат элементы в строго определенных пропорциях вне зависимости от условия получения этих соединений. Это правило называется законом постоянства состава или иногда законом Пруста.


Страница: