Аппарат экспрессии генов и его логика
Необходимо выделить два важных в функциональном отношении участка, образующихся при ассоциации субчастиц в процессе формирования 70S-рибосомы. Это участки, в которых происходит связывание двух тРНК – одной, присоединенной к растущей белковой цепи, и другой, несущей следующую добавляемую к цепи аминокислоту.
Особые тРНК и некоторые вспомогательные белки, участвующие в трансляции. Как у про-, так и у эукариот имеются два вида тРНК, которые связывают метионин. У прокариот они обозначаются как тРНК и тРНК, а у эукариот – соответственно тРНК и тРНК. Каждая из обоих видов тРНК как у про-, так и у эукариот аминоацетилируется метионином с помощью соответствующих аминоацил-тРНК-синтетаз. тРНК прокариот и тРНК эукариот обладают необычными свойствами, позволяющими им функционировать в качестве адапторов при инициации синтеза полипептидной цепи в соответствующих инициаторных AUG-кодонах. тРНК про- и эукариот узнают AUG-кодоны в белок-кодирующих последовательностях.
У прокариот аминогруппа метионил-тРНК, но не метионил-тРНК формилируется особым ферментом до Fmet-TPHK с использованием в качестве донора формильной группы М10-формилтетрагидрофолата. Очевидно, трансформилаза отличает met-TPHK от met-TPHK. Fmet-TPHK используется исключительно для инициации белковых цепей, a met-TPHKMMet – только для декодирования внутренних метиониновых кодонов. Несмотря на то, что тРНК эукариот также используется только для инициации, ее метионильная группа не подвергается формилированию. Очевидно, некие особые свойства, присущие тРНК и необходимые для выполнения ею специальной инициаторной функции, связаны исключительно с ее нуклеотидной последовательностью и / или трехмерной структурой.
Известны белки, которые только временно, на период трансляции, связываются с рибосомами. Они играют важную роль при инициации, элонгации и терминации синтеза белковой цепи. Прежде чем подробно обсуждать эти процессы, мы познакомим читателя с такими белками и кратко опишем их свойства и роль в трансляции.
Эти белки, называемые факторами инициации и обозначаемые IF-1, IF-2 и IF-3, необходимы для инициации трансляции мРНК с образованием белков. IF-1 и IF-3 связываются с 3. Важным этапом терминации или отделения белковой цепи от мРНК является гидролиз GTP.
6. Трансляция мРНК у прокариот
Зная всех участников процесса, мы можем теперь приступить к рассмотрению химических реакций, протекающих при синтезе полипептидов, т.е. реакций, участвующих в собственно трансляции. Несмотря на то, что этот процесс протекает непрерывно от старта к финишу, обычно выделяют три его этапа: инициацию, элонгацию и терминацию. Рассматривая каждый из этапов направляемого мРНК синтеза полипептидной цепи, мы должны учитывать два основных свойства этого процесса. Во-первых, полипептидные цепи синтезируются однонаправлен-но: с амино-конца к карбокси-концу. При этом карбоксильная группа уже образовавшегося участка полипептидной цепи соединяется с аминогруппой следующей присоединяемой аминокислоты с помощью пептидной связи. Это может произойти, лишь если карбоксильный конец растущей полипептидной цепи находится в активированном состоянии. Как мы уже отмечали, необходимая для этого энергия поступает в результате присоединения карбоксильной группы растущей полипептидной цепи и каждой присоединяемой аминокислоты к тРНК. Во-вторых, считывание мРНК начинается с кодона AUG, который обозначает 5'-конец кодирующей последовательности и детерминирует N-концевую аминокислоту синтезируемого полипептида. При инициации первая и вторая молекулы аминоацил-тРНК спариваются с первыми двумя кодонами мРНК. Далее трансляция продолжается в направлении 5'–>3' кодон за кодоном до тех пор, пока не достигнет стоп-сигнала, расположенного сразу же за кодоном, детерминирующим С-концевую аминокислоту.
а. Условия инициации
70S-рибосома способна осуществлять трансляцию последовательности мРНК, но не может инициировать этот процесс. При связывании инициаторных белков IF-1 и IF-2 с 30S-субчастицей происходит диссоциация 70S-рибосомы. 30S-субчастица в комплексе с IF-1 и IF-3 связывает IF-2, GTP и Fmet-тРНК. Такой полный комплекс связывается с 5'-концом кодирующей последовательности мРНК вблизи кодона AUG. Очевидно, IF-2 способен отличить Fmet-тРНК от тРНК, и эта специфичность отчасти обеспечивается N-формильной группой, отсутствующей у ТРНК Формирование полноценного функционального комплекса инициации завершается ассоциацией 50S^6-частицы с преинициаторным комплексом. С образованием функциональной 70S-субчастицы отделяются все три белка инициации.
Как узнается первый кодон? Связывание 30S-6-частицы с мРНК находится под строгим контролем нуклеотидной последовательности, расположенной примерно за 10 нуклеотидов до 5'-конца инициаторного кодона. Взаимодействию способствует комплементарное спаривание этой богатой пуринами последовательности из пяти-восьми нуклеотидов, называемой последовательностью Шайна-Дальгарно, с полипиримидиновым участком, находящимся вблизи 3'-конца 16S-pPHK. Эффективность инициации существенно зависит от степени комплементарности между последовательностями Шайна-Дальгарно и 16S-pPHK и от расстояния пурин-богатого участка до кодона AUG. Эта особенность наряду с другими, о которых будет сказано позднее, и объясняет различия в эффективности трансляции различных мРНК.
Процесс инициации зависит также от вторичной структуры того участка молекулы мРНК, в котором находится инициаторный кодон AUG. Если этот кодон окажется внутри двухцепочечного участка, то инициация будет неэффективна или вовсе блокируется. Именно таким образом может регулироваться доступность инициаторного AUG-кодона для 30S-рибосомы. AUG становится недоступным, если он оказывается спаренным при образовании конденсированной формы зрелой мРНК, и, напротив, доступным для инициации во время транскрипции мРНК или во время трансляции других кодирующих последовательностей на той же молекуле мРНК.
б. Элонгация полипептидной цепи
При ассоциации двух рибосомных субчастиц перед инициацией трансляции образуются два функциональных участка, необходимых для сборки белка: Р- и А-участки. Fmet-TPHKj» занимает Р-участок, а для образования первой пептидной связи необходимо, чтобы аминоацил-тРНК, соответствующая следующему кодону, заняла А-участок. Для этого аминоацил-тРНК должна сначала связать EF-Tu и GTP. Образовавшийся тройной комплекс и доставляет аминоацил-тРНК к А-участку. GTP в это время гидролизуется, и комплекс отделяется от рибосомы. Когда оба участка, А и Р, заняты, пептидилтрансферазная активность 50S-субчастицы катализирует перенос группы Fmet с ее тРНК на аминогруппу аминоацил-тРНК, находящейся в А-участке. В результате в А-участке оказывается дипептидил-тРНК, а в Р – свободная тРНК.
Для прочтения следующего кодона и удлинения полипептидной цепи еще на одну аминокислоту вся серия реакций должна повториться. Однако, прежде чем это произойдет, тРНК должна освободить Р-участок, образовавшаяся дипептидил-тРНК должна переместиться на него, а новый кодон должен быть готов к тому, чтобы занять освободившийся А-участок. Все эти процессы осуществляются с помощью EF-G при GTP-зависимой транслокации рибосомы. Источником энергии для перемещения рибосомы к следующему триплету кодирующей последовательности и удаления свободной тРНК из Р-сайта служит реакция гидролиза GTP до GDP. Теперь новый кодон, занявший А-сайт, готов к спариванию с родственной аминоацил-тРНК.