Аппарат экспрессии генов и его логика
Анализ генетического кода показывает, однако, что существуют специфические взаимодействия, позволяющие различать кодоны, у которых в третьей позиции стоит А или G. Например, тРНК, расшифровывающая кодон AUG как метионин, должна отличать этот триплет от кодона AUA, обозначающего изолейцин, а тРНК'1*11' должна отличать триптофановый кодон UGG от терминирующего кодона UGA. Специфичность обеих этих операций декодирования определяется спариванием С антикодона с G, находящимся в третьем положении кодона.
Модификация оснований в антикодонах может еще сильнее ограничить диапазон возможных взаимодействий кодон-антикодон. Например, гипоксантин, занимая место аденина в той позиции антикодона, по которой происходит спаривание с третьим основанием кодона, может обусловить спаривание такого антикодона с кодонами, у которых в последней позиции стоят основания U, С или А. Разнообразие модификаций оснований в антикодо-нах или–что встречается наиболее часто – оснований, соседствующих с антикодоном, изменяет специфичность взаимодействия аминоацил-тРНК–кодон. Таким способом обычно предотвращаются ошибки при считывании третьего основания кодонов и обеспечивается надежность процесса декодирования.
Правила спаривания оснований, согласно которым молекулы тРНК одного типа могут узнавать несколько разных кодонов, называются правилами неоднозначного соответствия. Следует отметить, однако, что термин «качание», используемый для описания некоторой свободы спаривания третьего основания кодона, просто как бы затушевывает тот факт, что мы до конца не знаем, какие именно химические и структурные особенности обусловливают кодон-антикодоновые взаимодействия в Р-и А-участках рибосомы.
Мутации в кодонах и антикодонах. Мутации, затрагивающие различные компоненты трансляционного аппарата, могут изменить результат считывания кодирующей последовательности. Наиболее драматичные последствия вызывают те мутации в гене, кодирующем белок, которые превращают кодон, отвечающий какой-то аминокислоте, в терминирующий кодон и тем самым приводят к преждевременному завершению синтеза из-за досрочной терминации трансляции в мутировавшем сайте. Примером может служить превращение лизинового кодона ААА в UAA и глутаминового кодона CAG в UAG. Аналогично любая мутация, в результате которой происходит замена аминокислотного кодона на кодон UGA, тоже вызовет преждевременную остановку синтеза полипептидной цепи. Однако, если в результате второй мутации произойдет изменение соответствующего основания в антикодоне тРНК, терминация может быть предотвращена, или супрессирована, и образуется полноразмерный, хотя и измененный, белок. Например, если тРНК, тРНК или тРНК изменятся подобным образом, то они смогут прочитать кодон UAG как аминокислотный. С помощью различных механизмов может произойти ошибочная трансляция и таких мутантных кодонов, как UAA и UGA. Мутации в тРНК-генах, затрагивающие основания, отличные от тех, которые составляют антикодон, могут привести к изменению специфичности или стабильности взаимодействий кодона и антикодона. Благодаря таким механизмам может быть предотвращена преждевременная терминация синтеза полипептида, если терминирующий кодон будет прочитан как смысловой. Подобная супрессия терминации, как правило, не очень эффективна, поэтому наряду с полноразмерными образуются и укороченные, преждевременно терминированные полипептидные цепи. Благодаря относительной неэффективности такой трансляционной супрессии не приносит большого вреда и случайное проскакивание терминирующих кодонов, находящихся на естественных концах кодирующих мРНК.
Миссенс-мутации, т.е. мутации, приводящие к аминокислотным заменам и соответственно к утрате белком его функции, также могут быть ревертированы благодаря супрессорным мутациям, вызывающим ошибочное считывание мутантного кодона. Это может произойти в том случае, если тРНК, несущая нужную аминокислоту или любую другую, которая может быть включена в данный сайт белковой цепи, имеет антикодон, способный к спариванию с мутантным кодоном. Мутации, вызывающие сдвиг рамки считывания кодирующей последовательности, также могут быть супрессированы, если мутантные тРНК или рибосомы случайно транслируют два или четыре основания вместо трех.
Итак, ошибки трансляции могут компенсировать последствия нарушений кодирующей последовательности. Мутационные изменения в антикодоне тРНК–это наиболее распространенный механизм супрессии; изменения в других участках молекулы тРНК могут привести к неправильной этерификации аминокислот аминоацил-тРНК-синтетазами или ошибочному спариванию на рибосоме. Ошибки в трансляции могут возникать и в том случае, если в результате мутаций происходит изменение белков или РНК-компонент рибосом, участвующих в кодон-антикодоновом взаимодействии. Точность трансляции уменьшается и под действием некоторых химических соединений, которые связываются с рибосомными белками в 30S-субчастице. Такие случаи нарушения процесса трансляции приводят к более тяжелым последствиям.
8. Трансляция мРНК у эукариот
Процесс трансляции эукариотической мРНК в основном аналогичен таковому прокариотической мРНК. За некоторыми отмеченными выше исключениями, генетический код универсален и кодоны последовательно транслируются с помощью специфических аминоацил-тРНК-синтетаз на рибосомах. Есть, однако, и три явных различия, обусловленных определенными свойствами эукариотических клеток. Во-первых, аппараты транскрипции и трансляции у эукариот физически разобщены, поскольку транскрипция осуществляется в ядре, а трансляция – в цитоплазме. Во-вторых, на 5'- и 3'-концах эукариотических мРНК имеются особые структуры. И в-третьих, эукариотические мРНК, за исключением мРНК, транскрибируемых с ДНК геномов вирусов, обычно содержат только одну белок-кодирующую последовательность.
Структура и свойства участников трансляции эукариотической мРНК пока изучены гораздо хуже, чем у прокариот. И хотя у эукариот выделяют те же три стадии процесса – инициацию, элонгацию и терминацию, – на каждой из них требуется больше нерибосомных белковых факторов. Несмотря на эти различия, последовательности, кодирующие белки прокариот, нормально транслируются эукариотическими системами трансляции при условии соответствующей модификации их мРНК на 3'- и 5'-концах. И наоборот, кодирующие последовательности эукариот эффективно транслируются системами прокариот, если у них перед 5'-концом инициаторного кодона AUG имеется последовательность Шайна-Дальгарно. Это значит, что трансляционные аппараты обоих типов организмов могут осуществлять свои функции, несмотря на особенности нуклеотидных последовательностей мРНК из разных источников.
а. Особые модификации мРНК эукариот
У эукариотических мРНК, транскрибированных с ядерных или вирусных геномов РНК-полимеразой II, всегда модифицированы 5'-концы, которые в этом случае называют «кэпами». РНК, транскрибируемые эукариотическими РНК-полимеразами I и III, не кэпированы и имеют обычные 5'-фосфатные концы. У большинства мРНК, синтезируемых РНК-содержащими вирусами животных, также имеются кэпы, хотя они синтезируются вирусными РНК-транскриптазами. Многие некэпированные мРНК неэффективно транслируются эукариотическими белоксинтезирующими системами из-за слабого связывания рибосом с мРНК. Кэпирование происходит на 5'-нуклеозидтрифосфате вскоре после инициации синтеза РНК-транскриптов и задолго до его завершения.