Моделирование работы банка
Рефераты >> Налоги >> Моделирование работы банка

Все это подсказывает путь алгоритмизации решения сложных задач в автоматизированных системах управления—замену трудоемких процедур, отвечающих обоснованным (точным или приближенным) методам решения детерминированных экстремальных задач, относительно простыми «законами управления»—решающими правилами или решающими распределениями стохастического расширения соответствующих задач.

Платой за упрощение задачи и за переход от громоздких алгоритмов к относительно простым решающим механизмам служат трудоемкая предварительная работа по построению «за­конов управления» и некоторая потеря эффективности решения задачи в каждом отдельном случае.

В литературе по стохастическому программированию опи­саны многочисленные модели выбора решений, сформулирован­ные в терминах стохастического программирования. Разнообразные задачи управления запаса­ми-классические примеры стохастических моделей. Синтез си­стем массового обслуживания, удовлетворяющих заданным тре­бованиям и оптимизирующих пропускную способность системы или определяемый ею доход, сводится к решению экстремаль­ных стохастических задач.

Глава 3. Динамическая модель работы банка

3.1. Вводные сведения

В общем случае, проведение управленческого анализа разбивается на три

основных этапа:

I.Производится группировка банковских услуг и операций по признаку сферы оказания и осуществления, функциональному подразделению, мес­ту выполнения и общей клиентской базе. Подобные комплексы услуг и опе­раций являются источниками прибыли, составляют единую технологиче­скую цепочку и называются бизнес-центрами. Далее следует сбор и аналитическая обработка данных по каждому из бизнес-центров. Методика анализа включает составление портфеля привле­чения и размещения средств, расчета операционных доходов, расходов и прибыли, накладных и обще банковских расходов, конечной прибыли и анализ окупаемости инвестиций в деятельность бизнес-центра. Для продвижения определенного комплекса услуг бизнес-центра требуют­ся капитальные вложения - инвестиции в техническое и программное обес­печение, помещения и оборудование. Данные инвестиции необходимо оце­нить с точки зрения окупаемости и рентабельности, потоков денежных посту­плений и потоков финансовых средств. Для этой цели производится анализ окупаемости инвестиционных проектов. В рамках этого же этапа производится наиболее важный и необходимый анализ рентабельности отдельных услуг и операций, осуществляемых биз­нес-центром.

II. На втором этапе сгруппированные комплексы услуг и операций (биз­несы) локализуются в организационной структуре банка. Происходит "наложение" и увязывание технологических цепочек бизнесов с функционально территориальной структурой организации. Формируются центры более высо­кого уровня - центры ответственности (или центры прибылей), включающие в себя несколько функционально взаимосвязанных и организационно объеди­ненных бизнес-центров. Необходима методика обоснованного перераспределения затрат ин­фраструктурных подразделений по центрам ответственности. Возможно, так­же такого перераспределения не осуществлять, выделяя в конечных продук­тах анализа результаты деятельности инфраструктурных центров. В ходе анализа рассчитываются основные показатели деятельности цен­тров ответственности - конечная прибыль, объемы привлеченных и разме­щенных средств, окупаемость инвестиционных проектов центра ответствен­ности, которые могут включать несколько взаимосвязанных проектов уровня бизнес-центров.

III.Общую сумму прибыли, заработанную банком, необходимо перерас­пределить, во-первых, по осуществляемым отдельным операциям и услугам, во-вторых, по функциональным подразделениям. Данный этап интегрирует результаты двух предыдущих и является наиболее трудоемким.

Данная разбивка финансовых результатов может производиться до уровня любой глубины - вплоть до каждого отдельного вида услуг и функционально­го подразделения - филиала или отдела.

Рассмотрим общий случай.

3.2. Постановка задачи

Некоторый банк, организационная структура которого построена на базе отделений, ежегодно распределяет ассигнования на выполнение различных работ. Каждое из S отделений представляет руководству банка данные трех видов . Информация первой группы относится к проведению поисковых исследований неопределенного характера . Если на исследования такого рода в отделении j выделяют vj тысяч долларов, то оценка ожидаемого долгосрочного дохода равна Pj (vj ) миллионов долларов. Информация второй группы относится к услугам, по которым поисковые исследования уже завершены и для внедрения которых требуется проведение ряда работ и подсчетов. Для таких проектов ассигнования в объеме wj тысяч долларов, согласно имеющейся оценке, дадут, в конечном счете, доход в размере Qj (wj ) миллионов долларов. К третьей группе относится информация , связанная с улучшением качества уже оказываемых услуг . Затраты xj тысяч долларов, согласно сделанным оценкам, должны принести всего Rj(xj) миллионов долларов дополнительного дохода.

Правление банка утверждает общую сумму ассигнований на все проекты в размере N тысяч долларов, и верхний предел Lj ассигнований между отделениями j. Следовательно, необходимо распределить ассигнования между отделениями таким образом, чтобы обеспечивалась максимизация общего дохода банка при наложенных ограничениях.

Математическая модель задачи описывается следующими соотношениями:

[Pj (v j ) + Q j (w j ) + Rj (x j )] (1)

максимизировать, при ограничениях

(vj + wj + xj ) N (2)

общая сумма ассигнований

vj + wj + xj Lj , j=1,2 s (3)

vj , wj , xj (4) неотрицательные целые при любом j .

Поскольку на все управляемые переменные наложено только одно ограничение (2) , а остальные бюджетные и целочисленные ограничения (3) и (4) относятся только к отделению j ,то в данном случае имеет место задача распределения усилий с одним ограничением.[3] Таким образом получаем следующее рекуррентное соотношение :

gj (n) = max [ Pj ( vj ) + Qj (wj ) + Rj (xj ) + gj ( n - vj - wj - xj ) ] , j = 1,2 .s (5)

где n = 0,1,2 .N и максимизация производится только по неотрицательным целочисленным значениям vj ,wj и xj удовлетворяющим условию:

vj + wj + xj min (Lj , n)

На каждом шаге отыскания максимума можно использовать метод решения задачи о распределении усилий, представив этот пример в следующем виде:

Pj ( vj ) + Qj (wj ) + Rj (xj ) max (6) при ограничениях

vj + wj + xj y , (7)

где vj ,wj и xj должны быть неотрицательными целыми числами. Необходимо получить решение для каждого значения y = 0,1 Lj .


Страница: