Моделирование работы банка
Рефераты >> Налоги >> Моделирование работы банка

Естественным обобщением двухэтапных задач являются многоэтапные (динамические) задачи стохастического програм­мирования. Часто в процессе управления представляется воз­можность последовательно наблюдать ряд реализаций парамет­ров условий и соответствующим образом корректировать план. Естественно, что как предварительный план, так и последова­тельные корректировки должны, помимо содержательных огра­ничений, учитывать априорные статистические характеристики случайных параметров условий на каждом этапе.

К анализу многоэтапных задач стохастического программи­рования сводятся формальные исследования численных методов планирования производства и развития экономической системы.

Роль стохастических моделей и методов в исследо­вании закономерностей поведения экономических систем и в разработке количественных методов планирования экономики и управления производством имеет два аспекта — методологический и вычислительный. И тот и другой связаны с одной из важнейших категорий современной матема­тической логики — с понятием сложности, точнее, с понятиями «сложность алгоритма», «сложность вычислений» и «сложность развития».

Роль вычислительного аспекта проблемы определяется тем, что планирование, управление и проектирование происходят, как правило, в условиях неполной информации. Рыночная конъюнктура, спрос на продукцию, изменения в состоянии обо­рудования не могут быть точно предсказаны. В условиях кон­курентной экономики дополнительно возникает направленная дезинформация.

Учет случайных факторов и неопределенности в планировании и управлении — важная задача стохастического программирования.

Однако этим не исчерпывается роль стохастических методов в экономическом анализе. Принципы стохастического програм­мирования дают основание для сопоставления затрат на накоп­ление и хранение информации с достигаемым экономическим эффектом, позволяют аргументировать рациональное разделе­ние задач между человеком и вычислительной машиной и слу­жат теоретическим фундаментом для алгоритмизации управле­ния сложными системами. Принципы стохастического програм­мирования позволяют сблизить точные, но узко направленные формальные математические методы с широкими, но нечеткими содержательными эвристическими методами анализа. И здесь, таким образом, мы переходим к методологической роли стоха­стического программирования в исследовании сложных систем.

В связи с оценками сложности алгоритмов и вычислений представляет смысл условно разделить задачи планирования, управления и проектирования на задачи вычислительного и не вычислительного характера.

Многие задачи управления, должны быть отнесены к классу задач не вычислительного характера. Т.о. необходимо согласование сложности управляемого объекта и управляющего устройства за счет ра­ционального упрощения объекта (разумной переформулировки задачи).

2.3.Формальная постановка стохастической задачи

Приведем формальную постановку многоэтапной стохастиче­ской задачи. Пусть wi—набор случайных параметров i-го этапа, a xi —решение, принимаемое на i-м этапе. Обозначим wk =(w1 , … , wk) , xk = (x1 , … ,xn) ,

k = 1,…,n .

Общая модель многоэтапной задачи стохастиче­ского программирования имеет вид:

Mwn y0 ( wn , xn ) ® min, (4.1)

M wk {yk ( wk , xk ) ½wk-1 }³bk (wk-1) , (4.2)

xkÎGk ,k=1,…,n. (4.3)

Здесь y0 (wn , xn) —случайная функция от решений всех этапов,

{yk (wk , xk) -случайная вектор-функция, определяющая ограни­чения k-го этапа; bk (wk-1) —случайный вектор; Gk —некоторое множество, определяющее жесткие ограничения k-го этапа; M wk {yk ½wk-1 }—условное математическое ожидание yk в пред­положении, что на этапах, предшествующих k-му, реализован набор

wk-1 =(w1 , … , wk-1).

Предполагается, что совместное рас­пределение вероятностей всех случайных параметров условий задано (или, по крайней мере, известно, что оно существует).

Для того чтобы постановка задачи (4.1)—(4.3) была пол­ной, необходимо еще указать, среди какого класса функций (ре­шающих правил x=x(w) ÎХ) от реализаций случайных исход­ных данных следует разыскивать решение.

К моменту, когда должно быть принято решение k-то этапа, можно успеть обработать результаты наблюдения реализаций случая на этапах 1, ., s; s£k.

В задачах решение на 1-м этапе принимается после реализации случайных параметров условий на предыду­щем (i—1)-м этапе. Решающие правила имеют вид xi=xi (wi-1 ) , i = 1,…,n .

Будем называть такие задачи многоэтапными зада­чами стохастического программирования с условными ограниче­ниями и с априорными решающими правилами.

Сведение задачи управления к анализу модели стохастиче­ского программирования позволяет разделить процесс выбора решения на два этапа. Первый—трудоемкий предваритель­ный — использует структуру задачи и априорную статистиче­скую информацию для получения решающего правила (или ре­шающего распределения) —формулы, таблицы или инструкции, устанавливающей зависимость решения (или функции распре­деления оптимального плана) от конкретных значений парамет­ров условий задачи. Второй - нетрудоемкий оперативный этап — использует решающее правило (решающее распределение) и те­кущую реализацию условий для вычисления оптимального плана (или его распределения).[10]

2.4.Методы решения задач стохастического программирования.

Основные классы задач, для решения которых создается вы­числительный комплекс, непосредственно или методами стоха­стического расширения формулируются как модели стохастиче­ского программирования.

Вообще говоря, все модели выбора решения, сформулирован­ные в терминах математического программирования, могут быть (а в практических задачах, отвечающих управлению сложными системами и процессами, должны быть) сформулированы как модели стохастического программирования.

Соответствие формально построенных стохастических моде­лей содержательным постановкам—решающее условие успеш­ного управления в условиях неполной информации. Вряд ли мо­гут быть приведены универсальные рекомендации по выбору информационной структуры модели и статистических характери­стик, используемых для формирования целевого функционала задачи и области его определения.

Анализ опыта решения практических экстремальных задач методами математического программирования свидетельствует о серьезных успехах этого подхода (и о внедрении данных ме­тодов в практику планирования, управления и проектирования) в задачах относительно простой структуры, главным образом одно экстремальных, при не слишком большой размерности задачи, когда число переменных и ограничений (в моделях достаточно общего вида) не превышает сотен или тысяч. Однако методы детерминированного математического программирования не прививаются в системах большой сложности, отвечающих многоэкстремальным задачам или задачам большой размерно­сти.

До сих пор нет достаточно конструктивного метода решения общей (даже линейной) двухэтапной задачи стохастического программирования. Стандартные методы выпуклого программи­рования в общем случае неприменимы для вычисления предва­рительного плана — решения выпуклой задачи первого этапа. Основная трудность в том, что целевая функция и область определения планов первого этапа заданы. вообще говоря, неявно. В случаях, когда область К имеет относительно простую структуру или задача оказывается с простой рекурсией, эффек­тивным, хотя и трудоемким методом вычисления предваритель­ного плана, оказывается метод стохастических градиентов[2], представляющий собой итеративный метод типа стохастической аппроксимации.


Страница: