Страница
7
Гетерогенизационный отжиг
При нагреве в сплаве идет реакция a + g ® a. Относительно количество фазы, которая полностью переходит в твердый раствор при нагреве и выделяется при обратном медленном охлаждении (по реакции a ® a+g), обычно не превышает 10 -15 % от всего объема сплава. Для данного сплава возможна частичная перекристаллизация избыточной фазы. В начале изотермической выдержки частично растворяется избыточная фаза и увеличивается концентрация растворенного компонента. Т.о. идут два процесса:
1) процесс концентрационного перераспределения Ве между фазами a и g;
2) процесс перестройки решетки Ве в решетку Сu.
Процесс идет путем образования и роста зародышей фазы a . Эти зародыши возникают только гетерогенным путем на межфазной поверхности раздела. При росте зародышей a- фазы g- фаза уничтожается. После первой стадии превращения концентрация раствора неоднородна, поэтому идет гомогенизация твердого раствора a. Возможна третья стадия — собирательная рекристаллизация.
В процессе охлаждения протекают аналогичные процессы:
1. Диффузионное перераспределение Ве между фазами.
2. Перестройка решетки a фазы в g .
В зависимости от степени переохлаждения определяется зарождение зародышей (малое переохлаждение - гетерогенное зарождение по границам зерен, большое - зарождение на вакансиях и т.д.). При достаточно длительной выдержке твердый раствор оказывается насыщенным Ве, согласно линии ограниченной растворимости. Сплав остается гетерофазным при нагреве и охлаждении. Данный отжиг оказывает влияние на микроструктуру и тонкую структуру.
Данная СО применяется как смягчающая обработка для деформированных полуфабрикатов, для повышения технологической пластичности, для повышения коррозионной стойкости .
Отжиг с фазовой перекристаллизацией.
С эвтектоидным превращением.
Эвтектоидная реакция представляет собой сложную фазовую реакцию,
состоящую обычно из двух элементарных:
1. полиморфное превращение;
2. растворение- выделение.
Данная СО слабо изучена в системе Сu - Ве. Превращение при нагреве развивается по диффузионному механизму, причем наиболее выражена диффузия Ве, т.к.:
1. Необходимость диффузии Ве обусловлена необходимостью перераспределения концентраций Ве между фазами и образованием твердого раствора.
2. Только насыщение a до равновесного содержания в ней Ве обуславливает термодинамическую стабильность a ниже Тэвт для чистого компонента.
Значение диффузии атомов Сu выражено в меньшей степени, т.к. изменение концентрации атомов Сu в ходе этого превращения не требуется или требуется очень мало. Данное превращение является многостадийным:
1. Образование зародышей b на межфазной границе a и b.
2. Рост b-фазы в направлении одновременно обоих фаз. Он заканчивается полным превращением g®b.
3. Растворение a в b.
В процессе этих реакций происходит две перестройки кристаллической решетки a®b и g®b. После завершения ФП начинаются пост фазовые СП. Поэтому продолжение процесса выглядит так:
4. Гомогенизация (выравнивание содержания Ве в b- фазе).
5. Рост зерна- b или собирательная рекристаллизация зерен-b.
Т.к. процесс включает полиморфное превращение, а удельные объемы a и b различны ( Vуд.a= Vуд.b ), то в ходе превращения при нагреве может наблюдаться явление фазового наклепа, т.е. пластическая деформация образовавшейся фазы b.
При охлаждении:
1. Получаем однородные кристаллы твердого раствора, гетерофазного.
2. Структура с однородным по объему содержанием Ве двух получившихся фаз имеет резко различное содержание Ве.
3. Происходит изменение кристаллической решетки. Т.о. превращение при охлаждении включает:
Ø полиморфное;
Ø выделение;
Ø диффузия Ве.
При выделении g из b появление зародышей начинается на границе. Размер конечного зерна зависит от размера исходного зерна. Структура меняется на уровне микроструктуры, тонкой и атомно-кристаллической структур. Т.о. после медленного охлаждения получают g-зерна не благоприятные к глубокой вытяжке. Т.е. сплав теряет свою пластичность. Это явление можно устранить путем довольно быстрого охлаждения. Скорее всего, именно из-за образования такой структуры этот вид отжига не получил широкого применения. Данная СО может применяться для устранения пороков структуры, возникших при предыдущей обработке ( литье, горячая деформация, сварка); смягчение сплава перед последующей операцией ( резание) и уменьшения напряжений, если данная структура является конечной.
Закалка.
Особенночтью полной закалки в данном сплаве является то, что идет и ФП в процессе охлаждения по бездиффузионному механизму (если скорости не настолько велики чтобы проскочить его), и изменяется термодинамическая стабильность твердого раствора ( из термодинамически стабильного при температуре нагрева превращения в состояние метастабильное в процессе охлаждения). Метастабильность закаленного твердого раствора определяется степенью его пересыщения относительно, равновесной концентрации. Т.о. при нагреве довольно быстро происходит растворения g- фазы и при довольном быстром охлаждении получается структура с малым содержанием g - фазы. СП при данной закалке происходят на уровне тонкой структуры т.к. атомы Ве замещают атомы Cu в твердом растворе. Из-за избытка упругой энергии, возникают остаточные напряжения. Т.о. при закалке повышается концентрация точечных дефектов.
Основное назначение закалки - подготовка сплава к старению. Часто данную закалку используют как промежуточную смягчающую операцию перед холодной деформацией (НТМО или МТО). Иногда закалка служит окончательной термообработкой для придания изделию необходимого комплекса свойств.
Старение.
В закаленном сплаве пересыщенный a - раствор содержит избыток растворенного компонента Ве. Закаленный сплав стремится прийти в более стабильное состояние, выделяя избыток растворенного компонента в виде второй фазы. Однако, т.к. данный сплав после закалки на пересыщенный твердый раствор имеет гетерофазное состояние, то старение занимает только часть объема. Что уменьшает получаемый эффект. В данном сплаве диффузионная подвижность при комнатной температуре низкая, поэтому естественного старения не происходит. Старение в общем случае протекает в несколько стадий:
1. Образование зон Гинье-Престона ( участков твердого раствора с резко повышенной концентрацией Ве).
2. Выделение метастабильной фазы g ( т.к. в данном случае меньше работа образования критического зародыша).
3. Переход в стабильное состояние метастабильной g - фазы ( образование стабильной g - фазы сопровождается растворением метастабильной g -фазы).
Дисперсные выделения склоны к укрупнению, при котором мелкие частицы исчезают, а крупные вырастают( т.е. к коагуляции), что приводит к уменьшению суммарной межфазной энергии [5]. Т.о. данная СО влияет на микроструктуру и тонкую структуру.
Данная обработка предназначена для увеличения прочностных свойств сплава. С увеличением времени старения (когда начинается переход в стабильное состояние и коагуляция g-фазы) происходит перестаривание сплава (разупрочнение).