Определение и обоснование видов и режимов структурной обработки сплава Cu+2,3%Be
Рефераты >> Металлургия >> Определение и обоснование видов и режимов структурной обработки сплава Cu+2,3%Be

где 0,1 ¸ 0,2 - коэффициент не зависящий от типа сплава.

Так как получения температура деформации и так является ниже цеховой и довольно существенно, то проведение последующей закалки для фиксации полученного состояния не требуется.

Используемая степень деформации (истинная) е = 0,3…0,5.

После НТМО необходима стабилизирующая обработка — старение.

Температура старения:

.

Время выдержки при старении должно быть достаточным для протекания ФП и получения устойчивого состояния сплава.

Скорость охлаждения при старении не регламентируется.

б) механико-термическая обработка.

Температура холодной деформации:

,

где 0,1 ¸ 0,2 - коэффициент не зависящий от типа сплава.

Степень деформации е около 0,1.

После холодной деформации следует произвести нагрев для прохождения полигонизации.

Температура нагрева

,

где 30 ¸ 50 - необходимый интервал перегрева для начала полигонизации.

Время выдержки довольно длительно. Это время необходимо для протекания полигонизации и получения полной полигональной субструктуры.

Скорость охлаждения не регламентируется.

2.4.3 Параметры химико-термической обработки:

Насыщающая — эта обработка проводится в активной атмосфере имеющей необходимую концентрацию бериллия в активном состоянии у поверхности изделия.

Температура нагрева или выдержки должна обеспечить необходимую диффузионную подвижность, чтобы насыщение произошло за практически приемлемое время.

,

где 0.7 ¸ 0,9 - коэффициент не зависящий от типа сплава.

Здесь мы также попадаем в двухфазную область, что не приемлемо в данном случае, поэтому также корректируем эту температуру, повышая ее до 810°С.

Длительность выдержки должна быть достаточно велика чтобы обеспечить требуемые величины насыщения поверхности и глубину насыщенного бериллием слоя, и если первое в основном зависит от активности насыщаемой среды, то второе — от времени выдержки.

Т.к. конечное состояние сплава — пересыщенный твердый раствор, то после нагрева (tв) и выдержки нужно охладить со скоростью большей или равной критической скорости охлаждения при закалке на пересыщенный твердый раствор (Vкр). Тогда стабилизирующей обработкой будет старение (см. параметры ВТМО с закалкой на пересыщенный твердый раствор).

2.5 Построение схем-графиков режимов назначенных видов структурной обработки.

Рис.2 Схема-график режима гомогенизирующего отжига сплава Сu + 2,3 % Ве.

Рис. 3 Схема-график режима рекристаллизационного отжига.

Рис. 4 Схема-график режима отжига II-го рода (гетерогенизационного и с фазовой перекристаллизацией сплава).

Рис. 5 Схема-график режима закалки.

Рис. 6 Схема-график режима старения сплава Сu + 2,3 % Ве.

Рис. 7 Схема-график режима отпуска сплава Сu + 2,3 % Ве.

Рис. 8 Схема-график режима ВТМО стареющего сплава Сu + 2,3 % Ве.

Рис. 9 Схема-график режима НТМО стареющего сплава Сu + 2,3 % Ве.

Рис.10 Схема-график режима механико-термической обработки.

Рис. 11 Схема-график режима химико-термической обработки с закалкой на пересыщенный твердый раствор сплава Сu+ 2,3 % Ве.

2.6 Фазовые и структурные превращение в процессе назначения СО.

Гомогенизирующий отжиг.

При этой обработке идет выравнивание химического состава по телу зурна (дендрита). Иногда данный отжиг называют диффузионным, т.к. в основе его лежит диффузия. В начале выдержки скопления g располагаются на границах дендритных ячеек, в центре a - фаза. В течение выдержки концентрация выравнивается. Т.к. при отжиге охлаждение достаточно медленное, то сплав при комнатной температуре имеет структуру, в которой g равномерно распределена. Данная СО оказывает влияние на микроструктуру и тонкую структуру. С термодинамической точки зрения данный отжиг является процессом энтропийным , т.е. осуществляется переход от неоднородного к однородному раствору по концентрации. Причем энтропия в данном случае возрастает с приближением к равновесию концентраций, что повышает скорость процесса. Наиболее интенсивно гомогенизация протекает в начальный период отжига. Повышение температуры отжига действует эффективнее увеличения времени. Данная СО применяется для повышения коррозионной стойкости сплава, улучшения обрабатываемости и др.

Рекристаллизационный отжиг

Данный отжиг является процессом многостадийным. При нагреве холодно деформируемого сплава происходят следующие термодинамические процессы:

1) движущей силой первичной рекристаллизации является уменьшение плотности дислокаций, а силой тормозящей этот процесс является увеличение поверхностной энергии;

2) на стадии собирательной рекристаллизации и если есть вторичной рекристаллизации термодинамической силой является уменьшение поверхностной энергии;

3) если при нагреве холодно деформируемого сплава происходит полигонизация, то термодинамической силой является не столько снижение плотности дислокаций, сколько изменение дислокационной структуры. При нагреве холодно деформируемого сплава конкурирующим процессом при рекристаллизации является нормализация. При рекристаллизации происходит движение сплошной границы превращений, которая “очищает” сплав от дефектов кристаллизационного строения, в частности дислокаций. При данной обработке сплав разупрочняется, зерна становятся разделены большеугловыми границами. Т.к. при отжиге охлаждение достаточно медленное, то сплав имеет при комнатной температуре структуру из довольно правильных, равноосных кристаллов. Размер зерна зависит от степени деформации температуры нагрева и времени выдержки. Предпочтительна мелкозернистая структура. При данной СО изменения в структуре происходит на уровне тонкой, микроструктуры, атомно-кристаллической структуры в связи с применением кристаллизационной направленностью (тип решетки не меняется). Причем ведущей является изменение тонкой структуры, т.к. ее изменение вызывает все остальные изменения. Данная СО применяется для разупрочнения, повышения технологической пластичности и ползучести определенного типа текстуры.


Страница: