Определение и обоснование видов и режимов структурной обработки сплава Cu+2,3%BeРефераты >> Металлургия >> Определение и обоснование видов и режимов структурной обработки сплава Cu+2,3%Be
При закалке с температуры 840°С сплавов с содержанием бериллия больше 8,4% , вплоть до 11% микроструктура состоит из кристаллов b и g фазы. В гомогенной области g-фаза (в некоторых источниках b'-фаза) содержит от 11,3 до 12,3% Be. Она представляет собой упорядоченную фазу на основе интерметаллида CuBe с упорядоченной объемно-центрированной кубической решеткой типа CsCl и периодом 2,69-2,7Å. Эта фаза получается при реакциях: выделение из b-фазы () в интервале температур 605 - 870°С и концентраций 6 - 11%Ве — по линии FH; эвтектоидное превращение b-фазы () при температуре 605°С и концентрациях 1,5-11,5%Ве — AFG соответственно.
Ниже линии эвтектоидного равновесия (линия AFG на рис.1), в интервале концентраций бериллия 0,2-11,5% (интервал L-N на рис.1 соответственно) идет реакция выделения: , при которой из пересыщенной бериллием фазы a выделяется g-фаза с большим его содержанием.
В системе имеются перитектическое (2,75 – 4,2% Be) и эвтектоидное (1,5 – 11,5% Be) равновесия, при 866 и 605°С соответственно, имеются фазовые превращения типа растворение-выделение, ввиду ограниченной растворимости Be в различных модификациях меди.
Теперь рассмотрим превращения, происходящие конкретно в сплаве Cu + 2,3%Be (сплав №1 на рис.1).
В сплаве 1 со снижением температуры с 1000 до 980°С (т. S) не происходит никаких превращений (область существования только жидкой фазы), дальше в интервале S-Q (980-875°С) идет кристаллизация из жидкости кристаллов a-фазы, при этом состав жидкости меняется по линии ликвидус, а кристаллов по солидус. Как видно из диаграммы, при этом и жидкость и кристаллическая фаза обогащаются Ве, судя из характера расположения этих линий, соответственно количество бериллия в центре кристалла и на его поверхности различное, т.е. существует ликвация Ве как в объеме сплава, так и по самой дендритной ячейке. В интервале температур Q-R (875-740°С) существует одна a-фаза, а после, при охлаждении примерно до 605°С (т. Y на рис.1), идет обеднение a-фазы бериллием по линии ВA и выделение b-фазы. При охлаждении ниже 605°С в выделявшемся доселе неупорядоченном твердом растворе замещения b при эвтектоидном превращении идет упорядочение — образование фазы g (b'): атомы меди располагаются преимущественно в узлах решетки, а атомы бериллия — в центре [1]. Хотя в реальном кристалле этот порядок точно не соблюдается: атомы меди могут занять места бериллия и наоборот. Рентгенограммы g (b') в системе Cu-Be выявляют линии сверхструктуры, которые отсутствуют у b-фазы. После прохождения эвтектоидной реакции () в сплаве находится три вида фаз: a-фаза, которая образовалась при кристаллизации, a-фаза, которая образовалась при эвтектоидной реакции из b-фазы, и g (b')-фаза, которая также образовалась при эвтектоидном превращении. При дальнейшем охлаждении в интервале 605-20°С идет также обеднение a-фазы бериллием по линии AL и выделение, дополнительно, g(b')-фазы.
2.2 Определение основных исходных данных.
Как видно из диаграммы состояния, в сплаве 1 (Cu+2,3%Be) в твердом состоянии происходит 2-а фазовых превращения. Это растворение-выделение и эвтектоидное. Рассмотрим их:
· при температурах, ниже 740°С (интервал R- U на рис.1) идут реакции выделения из a-фазы b и g-фазы:
;
· при температуре 605°С (т. Y на рис.1) идет эвтектоидная реакция упорядочения b-фазы:
;
Из жидкости, в интервале температур 980-875°С (интервал S-Q на рис.1) идет реакция выделения кристаллов a-фазы:
.
И при температуре солидуса (т. Q) равной 875°С сплав полностью состоит из кристаллов a-фазы.
Полученные в разделе данные сводим в таблицу:
Табл.1 Основные исходные данные по сплаву Cu+2,3%Be.
Тип фазового превращения | Температура фазового равновесия, °С | Примечания |
Кристаллизация | 980 | Температура ликвидуса |
Кристаллизация | 875 | Температура солидуса |
Растворение-выделение | 740 | |
Эвтектоидное | 605 |
2.3 Определение возможных видов структурной обработки.
Рассмотрим возможные для этого сплава виды обработок из классов: термической (ТО), деформационно-термической (ДТО) и химико-термической (ХТО) обработок.
2.3.1 ТО.
I) Отжиги I-го рода.
Все отжиги первого рода основаны на структурных превращениях в металле и идут вне зависимости от того, протекает ли в сплаве при обработке фазовые превращения, а следовательно потенциально возможны во всех металлах. Отжиги I рода бывают:
a) гомогенизирующие — подвергаются слитки и заготовки с целью снижения дендритной или внутрикристаллитной ликвации, которая повышает склонность сплава, обрабатываемого давлением, к хрупкому излому, к анизотропии свойств и возникновению таких дефектов, как шиферность (слоистый излом) и флокены (тонкие внутренние трещины, наблюдаемые в изломе в виде белых овальных пятен);
b) рекристаллизационные — подвергаются холоднодеформированные заготовки и детали с целью: частичного сохранения наклепа (неполный рекристаллизационный отжиг), сохранения деформационной или создания собственной текстуры (текстурный рекристаллизационный отжиг), устранения текстуры, получения структурной сверх пластичности (многократная комбинация деформации и рекристаллизационного отжига), получения зерен требуемого размера и монокристаллов (градиентный рекристаллизационный отжиг), снятия наклепа и перевода неравноосных после деформации зерен в более устойчивую, с термодинамической точки зрения, равноосную форму;
c) для снятия остаточных напряжений — подвергаются заготовки и детали, в которых в процессе предыдущих технологических операций, из-за неравномерного охлаждения, неоднородной пластической деформации и т.п. возникли остаточные напряжения (остаточные напряжения могут сниматься и при других видах отжигов).
Исходя из вышесказанного, можно сделать вывод — наш сплав может быть подвергнут любому из вышеприведенных видов отжигов I рода в случае, если исходные параметры состояния заготовки или детали, изготовленных из данного сплава, удовлетворяют условиям проведения соответствующей обработки, т.е.: для гомогенизирующего отжига исходная структура — литая, с выраженной дендритной ликвацией; для рекристаллизационного — холоднодеформированная, с большими степенями деформации; для снятия остаточных напряжений — наличие высоких остаточных напряжений, нежелательных при последующей обработке (в случае отсутствия других технологических операций в этой части технологической цепи, одним из эффектов которых является снятие остаточных напряжений) или использовании.