Краевые задачи строительной механики. Оболочки составные и со шпангоутами. Метод А.Ю.Виноградова
Рефераты >> Авиация и космонавтика >> Краевые задачи строительной механики. Оболочки составные и со шпангоутами. Метод А.Ю.Виноградова

Теория метода д.ф.-м.н. Юрия Ивановича Виноградова и к.ф.-м.н. Алексея Юрьевича Виноградова решения жестких краевых задач без ортонормирования.

Идея преодоления трудностей неустойчивого счета путем разделения интервала интегрирования на сопрягаемые участки принадлежит д.ф.-м.н. Юрию Ивановичу Виноградову (в том числе на этом материале защищена докторская диссертация). А выражение идеи разделения и сопряжения через формулы теории матриц, то есть через матричные экспоненты принадлежит к.ф.-м.н. Алексею Юрьевичу Виноградову.

Содержание:

1. Введение. (стр.1-5)

2. Метод решения жестких краевых задач без ортонормирования – метод сопряжения участков, выраженных матричными экспонентами. (стр. 6-7)

3. Составные оболочки вращения. (стр. 8-11) (22 мая 2014)

4. Шпангоут, выражаемый не дифференциальными, а алгебраическими уравнениями. (стр. 10-14) (22 мая 2014)

5. Случай, когда уравнения (оболочки и шпангоута) выражаются не через абстрактные вектора, а через вектора, состоящие из конкретных физических параметров. (стр. 15-17) (22 мая 2014)

Метод решения жестких краевых задач без ортонормирования.

1. Введение.

На примере системы дифференциальных уравнений цилиндрической оболочки ракеты – системы обыкновенных дифференциальных уравнений 8-го порядка (после разделения частных производных методом Фурье).

Система линейных обыкновенных дифференциальных уравнений имеет вид:

,

где – искомая вектор-функция задачи размерности 8х1, – производная искомой вектор-функции размерности 8х1, – квадратная матрица коэффициентов дифференциального уравнения размерности 8х8, – вектор-функция внешнего воздействия на систему размерности 8х1.

Краевые условия имеют вид:

где – значение искомой вектор-функции на левом крае х=0 размерности 8х1, – прямоугольная горизонтальная матрица коэффициентов краевых условий левого края размерности 4х8, – вектор внешних воздействий на левый край размерности 4х1,

– значение искомой вектор-функции на правом крае х=1 размерности 8х1, – прямоугольная горизонтальная матрица коэффициентов краевых условий правого края размерности 4х8, – вектор внешних воздействий на правый край размерности 4х1.

В случае, когда система дифференциальных уравнений имеет матрицу с постоянными коэффициентами =const, решение задачи Коши имеет вид [1]:

,

где , где - это единичная матрица.

Матричная экспонента ещё может называться матрицей Коши или матрициантом и может обозначаться в виде:

.

Тогда решение задачи Коши может быть записано в виде:

,

где это вектор частного решения неоднородной системы дифференциальных уравнений.

Вместо формулы для вычисления вектора частного решения неоднородной системы дифференциальных уравнений в виде [1]:

предлагается использовать следующую формулу для каждого отдельного участка интервала интегрирования:

.

Вычисление вектора частного решения неоднородной системы дифференциальных уравнений производиться при помощи представления матрицы Коши под знаком интеграла в виде ряда и интегрирования этого ряда поэлементно:

Эта формула справедлива для случая системы дифференциальных уравнений с постоянной матрицей коэффициентов =const.

Вектор может рассматриваться на участке приближенно в виде постоянной величины , что позволяет вынести его из под знака интеграла, что приводит к совсем простому ряду для вычислений на рассматриваемом участке.

Для случая дифференциальных уравнений с переменными коэффициентами в приведенной выше формуле для каждого участка может использоваться осредненная матрица коэффициентов системы дифференциальных уравнений.

Рассмотрим вариант, когда шаги интервала интегрирования выбираются достаточно малыми, что позволяет рассматривать вектор на участке приближенно в виде постоянной величины , что позволяет вынести этот вектор из под знаков интегралов:

Известно, что при T=(at+b) имеем

В нашем случае имеем

Тогда получаем .

Тогда получаем ряд для вычисления вектора частного решения неоднородной системы дифференциальных уравнений на малом участке :

Если участок не мал, то его можно поделить на подучастки и тогда можно предложить следующие рекуррентные (итерационные) формулы для вычисления частного вектора:

Имеем .

Также имеем формулу для отдельного подучастка:


Страница: