Лафферовы эффекты в моделях налогообложения
Рефераты >> Финансы >> Лафферовы эффекты в моделях налогообложения

Обсуждение метода. Одним из серьезных минусов дескриптивной модели является несоответствие априорным граничным условиям, указанным нами в пункте 1. Действительно,

ни одно из классических граничных условий и для дескриптивной модели (8) не выполняется, т.к. (9) генерирует ненулевые значения налоговых сборов на фискальных полюсах. Балацким Е.В., в отношении данного факта, делается предположение, что данная дескриптивная модель будет давать хорошие результаты только тогда, когда фискальные параметры находятся ближе к середине шкалы аргумента. При приближении параметров к своим границам метод, говорит он, может давать сильные погрешности. Если даже и принять на веру это сомнительное высказывание, то встает вопрос, где находиться эта середина и как оценить погрешности, возникаемые при оценке точек Лаффера? Ведь даже ошибка в 2-3% может привести государство к тяжелым социальным последствиям.

Также довольно сомнительно выглядит формула (15). Из нее следует, что необходимым условием существования точки Лаффера является ценовая нестабильность. Если же темп прироста цен , то любая установленная государством налоговая ставка будет оптимальной?

Однако применение дескриптивных моделей в теории налогов очень молодой и не до конца изученный метод. И такие его свойства как макроэкономическая постановка модели, и ее внутренняя динамичность, из-за введения показателя инфляции, не позволили нам не затронуть данный метод в обзоре.

2.3 Метод, основанный на применении производственно-институциональных функций

Основу прелагаемого модельного анализа лафферовых эффектов [2,7] составляют производственно-институциональные функции, которые являются обобщением традиционного аппарата производственных функций (ПФ) применительно к макроуровню. Разница заключается лишь в том, что в обычных ПФ в качестве эндогенного показателя используется объем выпуска (как правило, объем ВВП), а в качестве макрофакторов – труд (численность занятых) и капитал (объем основных фондов), в то время как в производственно-институциональных функциях набор макрофакторов дополняется переменными, характеризующими институциональную среду. Будем рассматривать только одну институциональную переменную – среднюю налоговую нагрузку (долю взимаемых налогов в объеме ВВП). Учитывая, что помимо чисто технологического (ресурсного) аспекта экономического роста (объемы и эффективность труда и капитала) в нашей модели учитывается еще и институциональный климат (налоговое бремя), то соответственно и традиционная ПФ трансформируется в производственно-институциональную функцию.

Методика анализа лафферовых эффектов с помощью производственно-институциональных функции. Используем производственно-институциональную функцию вида:

(16)

где - выпуск (объем ВВП страны); - капитал (объем основных фондов); - труд (численность занятых в экономике работников); - налоговая нагрузка (относительная совокупная налоговая нагрузка, вычисляемая как доля налоговых поступлений в ВВП, ); - трендовый оператор (функция, зависящая от времени ); и - параметры, оцениваемые статистически на основе ретроспективных динамических рядов. Переменные и берутся за соответствующие годы .

Особенность функции (16) состоит в том, что макропродукт страны зависит от труда, капитала и налогового бремени. Причем влияние труда и капитала на экономический рост само зависит от фискального климата. Более того, эластичности труда и капитала являются квадратичными функциями налоговой нагрузки, что автоматически предполагает нетривиальность всего анализа.

Эконометрическая зависимость (16) задает производственную кривую, т.е. зависимость между массой собираемых налогов и относительной налоговой нагрузкой. Тогда фискальная кривая, т.е. зависимость между массой собираемых налогов и относительной налоговой нагрузкой, описывается следующей функцией:

(17)

В соответствии с классификацией, данной в пункте1, точкой Лаффера первого рода называется вершина (т.е. точка максимума) производственной кривой (16), когда .

Таким образом, точка Лаффера первого рода определяется выражением:

(18)

Аналогичным образом определяется точка Лаффера второго рода , в качестве которой понимается вершина (т.е. точка максимума) фискальной кривой (2), когда .

Решив последние квадратичное уравнение, получим выражение для нахождения точки Лаффера второго рода:

(19)

Формула (19) требует пояснений. Из двух стационарных точек, определяемых в соответствии с (19), выбирается только одна, являющаяся точкой максимума. Однако заранее сказать, какая из двух критических точек будет точкой максимума нельзя, в связи с чем в формуле (19) фигурируют две потенциальные точки Лаффера второго рода.


Страница: