Лафферовы эффекты в моделях налогообложения
тогда
Т.к. нас интересует , то опустим положительный знаменатель
т.к. (налог<100%), то , тогда имеем
откуда, путем приведения подобных слагаемых, получим условие
(12)
Аналогичная ситуация характерна и для ставки налога на прибыль. Для этого налога при условии
(13)
Из (12) и (13) видно, что в стабильной ценовой среде классический эффект Лаффера на проявляется и, соответственно, точка Лаффера отсутствует. Однако ситуация в корне меняется, когда сдвиг налоговой ставки происходит на фоне ненулевой инфляции.
Чтобы определить совместное влияние роста цен и увеличения налоговой ставки (для определенности и наглядности ограничимся налогом на добавленную стоимость) необходимо рассмотреть поведение величины дифференциала :
(14)
Введя обозначение темпа прироста цен , и учитывая, что для случая , условие позволяет получить выражение для стационарной точки :
Откуда
(15)
Полученная формула (15), отличная от конструкции предлагаемой Балацким Е.В.:
, (15')
на наш взгляд, является единственно правильной.
Из (14) и (15) вытекает, что при , и и точка - автономная точка Лаффера второго рода, т.к. при переходе через нее меняет знак с “+” на “-” .
Проведем при помощи математического приложения “MathCAD 2001” апробацию полученной конструкции ссылаясь на показатели украинской экономики 1991-1994 гг.
Табл. 2.
Показатели для экономики России за 1991-1994 гг.
|
|
|
|
|
|
|
|
|
|
|
13,90% |
55,11% |
6,48% |
0,88 |
0,79 |
0,94 |
1,14 |
35,00% |
20,00% |
41,00% |
5,00% |
Для приведенных показателей все вышеприведенные условия верны: , .
Единственной проблемой при проведении численного эксперимента стало определение величины уровня цен . Т.к. в формуле (15') у Балацкого уровень цен не фигурирует, статистические данные относительно данного показателя им не приводятся. В связи с информационной недостаточностью, показатель был взят нами как переменная, такая что , т.е. . И, полагаясь на это, нами была построена функция (15) выражающая зависимость точки Лаффера от уровня цен :
Полученная функция, как можно судить из графика, на отрезке принимает значения из области . Поэтому найденная нами точка Лаффера .