Лафферовы эффекты в моделях налогообложения
Рефераты >> Финансы >> Лафферовы эффекты в моделях налогообложения

тогда

Т.к. нас интересует , то опустим положительный знаменатель

т.к. (налог<100%), то , тогда имеем

откуда, путем приведения подобных слагаемых, получим условие

(12)

Аналогичная ситуация характерна и для ставки налога на прибыль. Для этого налога при условии

(13)

Из (12) и (13) видно, что в стабильной ценовой среде классический эффект Лаффера на проявляется и, соответственно, точка Лаффера отсутствует. Однако ситуация в корне меняется, когда сдвиг налоговой ставки происходит на фоне ненулевой инфляции.

Чтобы определить совместное влияние роста цен и увеличения налоговой ставки (для определенности и наглядности ограничимся налогом на добавленную стоимость) необходимо рассмотреть поведение величины дифференциала :

(14)

Введя обозначение темпа прироста цен , и учитывая, что для случая , условие позволяет получить выражение для стационарной точки :

Откуда

(15)

Полученная формула (15), отличная от конструкции предлагаемой Балацким Е.В.:

, (15')

на наш взгляд, является единственно правильной.

Из (14) и (15) вытекает, что при , и и точка - автономная точка Лаффера второго рода, т.к. при переходе через нее меняет знак с “+” на “-” .

Проведем при помощи математического приложения “MathCAD 2001” апробацию полученной конструкции ссылаясь на показатели украинской экономики 1991-1994 гг.

Табл. 2.

Показатели для экономики России за 1991-1994 гг.

13,90%

55,11%

6,48%

0,88

0,79

0,94

1,14

35,00%

20,00%

41,00%

5,00%

Для приведенных показателей все вышеприведенные условия верны: , .

Единственной проблемой при проведении численного эксперимента стало определение величины уровня цен . Т.к. в формуле (15') у Балацкого уровень цен не фигурирует, статистические данные относительно данного показателя им не приводятся. В связи с информационной недостаточностью, показатель был взят нами как переменная, такая что , т.е. . И, полагаясь на это, нами была построена функция (15) выражающая зависимость точки Лаффера от уровня цен :

Полученная функция, как можно судить из графика, на отрезке принимает значения из области . Поэтому найденная нами точка Лаффера .


Страница: