Лафферовы эффекты в моделях налогообложения
Идеи лафферовых эффектов первого и второго родов, по оценке Балацкого Е.В., основываются на следующих сугубо искусственных постулатах.
1. Догматическое утверждение (в действительности являющимся всего лишь логическим предположением), что вообще существует некие значения q между нулем и 100%, обеспечивающие максимальные значения ВВП и налоговых сборов.
2. Гипотетическая абстракция относительно граничных условий, ибо равенство налоговой ставки нулю означает отсутствие самого государства (из-за неимения средств к существованию), а когда все чистые доходы забираются государством, производство полностью свернется и бюджет больше ничего не получит. Последнее утверждение, правда, опровергается практикой многолетнего функционирования командной экономики, но этот факт, не имеет большого значения для последующего анализа, и в рамках данной работы рассматриваться не будет. Следует лишь заметить, что с учетом этого мы получил бы кривую Лаффера покрывающую не весь отрезок [0,1], а более узкий, усеченный отрезок [0,], где 0,5<<1.
3. Автоматически подразумевается пропорциональность всех видов налогов, исходящая из начальной макроэкономической постановки задачи. Вследствие, чего более сложные фискальные системы (прогрессивного или регрессивного налогообложения), довольно часто встречающиеся на практике, “не вписываются” в агрегированную конструкцию кривой Лаффера.
4. Допускается безинфляционность экономики, ибо кривая Лаффера описывает налоговые поступления в номинальном измерении, вследствие чего в условиях существования эффекта Оливера–Танци (когда налоговые поступления возрастают даже при сокращении налоговой базы из-за относительно высокой инфляции) их необходимо рассматривать в реальном измерении.
Неудивительно, что, исходя из сказанного, а также учитывая результаты и других исследований, Балацкий Е.В., приходит к общераспространенному заключению, что теория кривой Лаффера не более чем красивая гипотеза, которая в целом не подтверждается. Тем не менее, во многих исследованиях им априори предполагается существование кривой Лаффера. В дальнейшем мы на моделях подробно рассмотрим основные из них, дадим им оценку, устраним существующие недостатки и попытаемся все-таки ответить на вопрос “существует ли Лафферовы эффекты или это всего лишь налоговая мифологема?”.
2. Методы исследования лафферовых эффектов
Многочисленные попытки количественной оценки точек Лаффера привели к образованию различных подходов к решению данной проблемы. В этом параграфе, на основе исследований Балацкого Е. В., рассмотрены основные из них. Причем они приведены в порядке их эволюции: начиная с методов зашедших в тупик и заканчивая наиболее распространенным на сегодня подходом.
Условно методы изучения лафферовых эффектов можно разделить на три группы:
1. метод, основанный на оптимизационных моделях,
2. метод, основанный на дескриптивных моделях,
3. метод, основанный на применении производственно-институциональных функций.
Разумеется, перечисленными подходами не исчерпывается все инструментальное разнообразие, порожденное желанием отыскать точки Лаффера. Однако остальные методы, такие, например, как метод кусочной интерполяции [6] и довольно экзотический графический метод [9] грешат тем, что они не могут быть использованы на практике без множества оговорок, - и поэтому не выдерживают никакой критики.
2.1 Метод, основанный на оптимизационных моделях
Анализ литературы по теории налогов показывает, что практически все экономисты, пытавшиеся оценить точки Лаффера, культивируют оптимизационные модели. Среди российских ученых пионерами в применении оптимизационных моделей для изучения лафферовых эффектов были Соколовский Л.Е. и Мовшович С.М. [10,11]. Однако для демонстрации данного метода правильно рассматривать более позднюю работу Балацкого Е.В. [8], почти идентичную указанным выше, но в то же время существенно доработанную.
Методика анализа лафферовых эффектов с помощью оптимизационных моделей. Итак, в качестве базовой модели производства будем опираться на модель чистой прибыли , остающейся в распоряжении предприятия после выплаты всех налогов (в нашей модели их всего четыре):
где – объем выпускаемой предприятием продукции в натуральном выражении; – средняя цена единицы выпускаемой продукции; – оборотные фонды предприятия (сырье и материалы); – средняя цена единицы оборотных средств; – численность занятых на фирме; – средняя заработная плата персонала; – объем производственных мощностей в натуральном выражении; – средняя цена производственных мощностей; – норма амортизации; – объем затрат на рекламу в натуральных величинах; – цена рекламных услуг; – налог на прибыль; – налог на добавленную стоимость; – социальные начисления на заработную плату; – налог на рекламу.
Тогда искомая модель производства примет вид:
(1)
Учитывая, что издержки и зависят от , а сам ограничен спросом , который функционально связан с ценой. Запишем условие, определяющее оптимальную цену производителя: , предварительно введя следующие обозначения: - эластичность спроса по цене; - эластичность материальных затрат (оборотных фондов) по выпуску; - эластичность затрат труда по выпуску; - эластичность производственных мощностей (основного капитала) по выпуску; - эластичность затрат на рекламу по выпуску; - доля материальных затрат (промежуточного потребления) в цене продукции; - доля затрат труда в валовой стоимости; - доля амортизации (износа основного капитала) в цене продукции; - доля затрат на рекламу в цене продукции.