Интеграл Лебега
Рефераты >> Математика >> Интеграл Лебега

Si ® (L) .

Но в таком случае

Si - si ® (L) .

С другой стороны, в курсе Анализа устанавливается, что для того, чтобы ограниченная функция f(x) была интегрируема (R), необходимо и достаточно, чтобы было Si – si ® 0.

Сопоставляя это со сказанным выше, мы видим, что для инте­грируемости (R) функции f(x) необходимо и достаточно, чтобы было

(L) = 0. (1)

Условие (1) во всяком случае выполнено, если разность М(х) - т(х) эквивалентна нулю, но так как эта разность неотри­цательна, то и обратно из (1) следует, что

т(х) ~ М(х). (2)

Итак, интегрируемость (R) ограниченной функции f(x) равно­сильна соотношению (2).

Сопоставив этот результат с теоремой 1, получаем следующую теорему.

Теорема 2 (А. Лебег). Для того чтобы ограниченная функ­ция f(x) была интегрируема (R),необходимо и достаточно, чтобы она была непрерывна почти везде.

Эта замечательная теорема представляет собой наиболее простой и ясный признак интегрируемости (R). В частности, она оправды­вает сделанное в пункте 2 замечание, что интегрируемыми (R) могут быть только «не очень разрывные» функции.

Допустим теперь, что функция f(x) интегрируема (R). Тогда она необходимо ограничена и почти везде будет

т(х) = М(х).

Но ведь

т(х) £ f(x) £ М(х).

Значит, почти везде

f(x) = m(x),

и f(x), будучи эквивалентна измеримой функции т(х), измерима сама. Так как всякая ограниченная измеримая функция интегри­руема (L), то такова же и f(x), т. е. из интегрируемости какой-нибудь функции в смысле Римана вытекает ее интегрируемость в смысле Лебега.

Наконец, из эквивалентности функций f(x) и т(х) следует, что

(L) = (L) .

Но, как известно из курса Анализа, в условиях основной леммы для интегрируемой (R) функции f(x) будет

si ® (R),

где si есть нижняя сумма Дарбу, отвечающая i-му способу дробле­ния. Сопоставляя это с тем, что, как показано нами,

si ® (L) ,

мы видим, что

(R) = (L) .

Таким образом, имеет место

Теорема 3. Всякая функция, интегрируемая (R), необходимо интегрируема и (L), и оба ее интеграла равны между собой.

В заключение отметим, что функция Дирихле y(x) (равная нулю в иррациональных и единице в рациональных точках) интегри­руема (L) (ибо она эквивалентна нулю), но, как мы видели в пункте 2, не интегрируема (R), так что теорема 3 не обратима.

6. Примеры

1) Вычислить интеграл Лебега от функции на интервале (1; 2).

Строим срезку

N, f(x) ³ N,

fN(x) =

f(x), f(x) < N.

= N,

x = 1 + .

= ,

= + = Nx + = N - N + -

- = + - = - + ,

= = ,

(L) = .

2) Суммируемы ли функции и на интервале (0; 1).

f(x) = .

Строим срезку

= N,

x = .

= + = + = 1 - = 1 + ,

= = (1 + ) = +¥,

значит функция f(x) = суммируемой не является.

f(x) = .

Строим срезку

= N,

x = .

= + = - = - (1 - ) = - 1 + =


Страница: