Геометрия чисел
Рефераты >> Математика >> Геометрия чисел

Содержание.

1. Введение. 2

2. Постановка задачи. 3

3. Основная задача геометрии чисел. 4

4. Теорема Минковского. 6

5. Доказательство теоремы Минковского. 7

6. Решётки. 10

7. Критические решётки. 13

8. «Неоднородная задача». 17

9. Список литературы. 18

Введение.

Возникновением теории чисел мы, по большому счёту, обязаны Минковскому. Минковский (Minkowski), Герман - выдающийся математик (1864 - 1909), еврей, родом из России. Был профессором в Бонне, Кенигсберге, Цюрихе и Геттингене. Сблизил теорию чисел с геометрией, создав особое учение о "геометрии чисел" ("Geometrie der Zahlen", 1896 - 1910; "Diophantische Approzimationen", 1907, и др.). Последняя его работа: "Raum und Zeit" (Лейпциг.,1909; несколько русских переводов); здесь дана смелая математическая формулировка так называемого "принципа относительности". Полное собрание сочинение Минковского вышло в Лейпциге, в 1911 г.; биография Минковского в русском издании "Пространство и время". Таким образом, Минковский сделал большой вклад в развитие математики как науки. В частности, он сумел упростить теорию единиц полей алгебраических чисел, а также упростил и развил теорию аппроксимации иррациональных чисел рациональными, или теорию диофантовых приближений. Под диофантовыми приближениями в данном случае понимается раздел теории чисел, изучающий приближения действительных чисел рациональными и вопросы, связанные с решением в целых числах линейных и нелинейных неравенств с действительными коэффициентами. Это новое направление, которое Минковский назвал „геометрией чисел", развилось в независимый раздел теории чисел, имеющий много приложений в самых различных вопросах и вместе с тем достаточно интересный для самостоятельного изучения.

Постановка задачи.

Для начала я хочу рассмотреть некоторые понятия и результаты, играющие в дальнейшем основную роль. Рассуждения, которыми мы здесь пользуемся, иногда значительно отличаются от рассуждений в основных книгах по данному вопросу, так как в данной работе мы имеем целью, не давая полных доказательств, сделать для простейших случаев геометрическую ситуацию интуитивно ясной, тогда как позднее мы будем вынуждены жертвовать наглядностью ради точности. В работе рассматривается основная задача геометрии чисел, приводится теорема Минковского с её доказательством, и объясняются такие понятия геометрии чисел как решётки и критические решётки. В конце работы приводится так называемая «неоднородная задача» геометрии чисел.

Основная задача геометрии чисел.

Основной и типичной задачей геометрии чисел является сле­дующая задача.

Пусть f(х1,…,xn) — функция вещественных аргументов, прини­мающая вещественные значения. Как мал может быть ïf(u1,…,un)ï при подходящем выборе целых чисел u1,…,un? Может встретиться тривиальный случай f(0,…,0)=0, например, если f(х1,…,xn) является однородной формой; в этом случае совокупность значений u1 = u2 = . = un = 0 из рассмотрения исключается (“однородная проблема”).

Обычно рассматриваются оценки, применимые не только для кон­кретных функций f, но и для целых классов функций. Так, типичным результатом такого рода является следующее предложение. Пусть

f(x1,x2) = a11x12 + 2a12x1x2 + a22x22 (1)

- положительно определённая квадратичная форма. Тогда найдутся такие целые числа u1,u2, не равные одновременно нулю, что справедливо неравенство

f(u1,u2) £ (4D/3)1/2 (2)

где D = a11a22 – a122 – определитель формы. Ясно, что если этот результат верен, то он является наилучшим. Действительно,

u12 + u1u2 + u22 ³ 1

для всех пар целых чисел u1,u2, не равных одновременно нулю; здесь D = 3/4.

Конечно, случай положительно определённых бинарных квадратичных форм крайне прост, и результат задачи был известен задолго до возникновения геометрии чисел. Однако на положительно определённых бинарных квадратичных формах относительно просто проводятся некоторые рассуждения геометрии чисел, так что эти формы удобно использовать в качестве иллюстрации всех рассуждений.

Только что сформулированный результат можно выразить на­глядно. Неравенство типа

f(x1,x2) £ k,

где f(x1,x2) — форма (1), а k — некоторое положительное число, задает область Â плоскости {x1,x2}, ограниченную эллипсом. Таким образом, наше предложение утверждает, что если k ³ (4D/3)1/2, то область Â содержит точку (u1,u2) с целыми координатами u1 и u2, не равными одновременно нулю.

Теорема Минковского.

Аналогичный, но, правда, не настолько точный результат немедленно следует из основной теоремы Минковского. В двумерном случае эта теорема утверждает, что область Â всегда содержит точку (u1,u2) с целыми координатами, отличную от начала, если эта область удовлетворяет следующим трем условиям:

1) область Â симметрична относительно начала координат; т. е. если точка (x1,x2) находится в Â, то точка (-x1,-x2) также содержится в Â;

2) область Â выпукла; т. е. если (x1,x2), (y1,y2) — две какие-нибудь точки области Â, то и весь отрезок

{lx1 + (1-l)y1, lx2 + (1-l)y2}, 0 £ l £ 1,

соединяющий эти точки, также содержится в Â;

3) площадь Â больше 4.

Любой эллипс f(x1,x2) £ k удовлетворяет условиям 1) и 2). Так как его площадь равна

kp / (a11a22 – a12)1/2 = kp / D1/2,

то он удовлетворяет условию 3), если kp > 4D1/2. Таким образом, мы имеем результат, аналогичный приведенному выше предложению, если в (2) константу (4/3)1/2 заменить любым числом, большим 4/p.

Доказательство теоремы Минковского.

Интересно будет кратко рассмотреть основные идеи, лежащие в основе доказательства теоремы Минковского, потому что в формальных доказательствах, приводимых основными источниками, они заслоняются необходимостью получения сильных теорем, имеющих наиболее широкие приложения.

Вместо области Â Минковский рассматривает область j = Â/2, которая состоит из точек (x1/2,x2/2), где (x1,x2) - точки области Â. Таким образом, область j симметрична относительно начала координат и выпукла, её площадь равна четверти площади области Â и, следовательно, больше 1. В общем случае Минковский рассматривает совокупность областей j (u1,u2) с центрами в целочисленных точках (u1,u2), полученных из тела j параллельными переносами.

Для начала справедливо отметить, что если j и j(u1,u2) пересекаются, то точка (u1,u2) находится в Â. Обратное утверждение тривиально. Если точка (u1,u2) находится в Â, то точка (u1/2,u2/2) содержится как в j, так и в j(u1,u2). Действительно, пусть (ξ1, ξ2) – точка, лежащая в пересечении. Так как точка (ξ1, ξ2) лежит в области j(u1,u2), то тогда точка (ξ1 – u1, ξ2 – u2) лежит в области j; следовательно, ввиду симметрии области j точка (u1 - ξ1, u2 - ξ2) находится в j. Наконец, в силу выпуклости тела j середина отрезка, соединяющего точку (u1 - ξ1, u2 - ξ2) с точкой (ξ1, ξ2), то есть точка (u1/2,u2/2), лежит в j, а потому точка (u1,u2) находится в Â. Что, собственно, и требовалось доказать. Ясно, что область j(u1,u2) тогда и только тогда пересекается с областью j(u1’,u2’), когда область j пересекается с об­ластью j(u1 - u1’, u2 - u2’).


Страница: