Геометрия
Рефераты >> Математика >> Геометрия

БИЛЕТ 12 ОПРЕДЕЛЕНИЕ: Две пересекающиеся плоскости называются перпендикулярными, если угол м/у ними равен 900.

ТЕОРЕМА: Если одна из двух плоскостей проходит ч/з прямую,перпендикулярную к др.

плоскости, то такие плоскости перпендикулярны.

Док-во: Рассмотрим плоскости a и b такие, что плоскость a проходит ч/з прямую АВ, перпендикулярную к плоскости b и пересекающуюся с ней в точке А. Докажем, что a^b. Плоскости a и b пересекаются по прямой АС, причем АВ^АС, Т.к. по усл. АВ^b, и, значит, прямая АВ^ к любой прямой, лежащей в плоскости b.

Проведем в плоскости b прямую АD,^АС. Тогда ÐBAD - линейный угол двугранного угла, образованного при пересечении плоскостей a и b. Но ÐBAD=900 (т.к. AB^b). След-но, угол м/у плоскостями a и b равен 900, т.е. a^b. Ч.Т.Д.

Sбок=P*a (а - бок. ребро, Р-периметр)  

БИЛЕТ 11 ТЕОРЕМА: Если две прямые перпендикулярны плоскости, то они параллельны.

Док-во: Рассмотрим прямые а и b, перпендикулярные к плоскости a. Докажем, что а½½b.

Через какую-нибудь точку М прямой b проведем прямую b1, параллельную прямой a. Докажем, что прямая b1 совпадает с прямой b. Тем самым будет доказано, что a½½ b. Допустим, что прямые b и b1 не совпадают. Тогда в плоскости b, содержащей прямые b и b1, ч/з точку М проходят две прямые, перпендикулярные к прямой c, по которой пересекаются плоскости a и b. Но это невозможно, след-но, a½½ b. Ч.Т.Д.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

БИЛЕТ 13 ОПРЕДЕЛЕНИЕ: Расстояние м/у одной из скрещивающихся прямых и плоскостью, проходящей ч/з другую прямую параллельно первой, называется расстоянием м/у скрещивающимися прямыми.

Sполн=Sбок+2Sосн ; Sбок=P*H(ребро)  

БИЛЕТ 14 ОПРЕДЕЛЕНИЕ: Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае наклонной.

ТЕОРЕМА: Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.

Док-во: Бок.грани прямой призмы - прямоугольники, основания которых - стороны основания призмы, а высоты равны высоте h призмы. Площадь боковой поверхности призмы равна сумме площадей указанных прямоугольников, т.е. равна сумме произведений сторон основания на высоту h. Вынося множитель h за скобки, получим в скобках сумму сторон основания призмы, т.е. его периметр Р. Итак, Sбок=P*h. Ч.Т.Д.

- - - - - - - - - - - - - - - - - - - - - - --- - - - - - - - - - - -  

БИЛЕТ 15 Рассмотрим два равных параллелограмма ABCD и A1B1C1D1, расположен-

ных в плоскостях так, что отрезки AA1,BB1,CC1, и

DD1 параллельны.

Поверхность составленная из двух равных параллелограммов ABCD и A1B1C1D1 и четырех параллелограммов называется параллелепипедом м обозначается ABCDA1 D1.

Параллелограммы, из которых составлен параллелепипед, называются гранями, их стороны - ребрами, а вершины параллелограммов - вершинами параллелепипеда.

ТЕОРЕМА: Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Док-во: Рассмотрим четырехугольник A1D1CB, диагонали которого являются диагоналями параллелепипеда ABCDA1 D1. Т.к. A1D1½½ BC и

A1D1=BC, то A1D1CB - параллелограмм. Поэтому диагонали A1C и D1B пересекаются в некоторой точке О и этой точкой делятся пополам.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

БИЛЕТ 18 Рассмотрим многоугольник A1A2 An

и точку P не лежащую в плоскости этого многоугольника. Соединив точку P отрезками с вершинами многоугольника, получим n треуголь-

ников: PA1A2,PA2A3, .,PAnA1.

Многогранник, составленный из n-угольника A1A2 An и n треугольников, называется пирамидой

Многоугольник A1A2 An называется основанием, а треугольники - боковыми гранями пирамиды. Точка P называется вершиной пирамиды, а отрезки PA1, PA2, ., Pan - ее боковыми ребрами.

ТЕОРЕМА: Плоскость, параллельная основанию пирамиды и пересекающая ее, отсекает подобную пирамиду.

Док-во: S-вершина пирамид

A - верш.основания и A1 -

точка пересечения секущей

плоскости с боковым ребр.

SA. Подвергнем пирамиду

преобразованию гомотетии

относительно вершины S с

коэф. гомотет. k=SA1/SA

При этом плоск-ть основания переходит в паралл. плоск-ть, проходящую ч/з точку A1, т.е. в секущую

плоскость, а след-но, вся пирамида - в отсекаемую это плоскостью часть. Т.к. гомотет. есть преобразование подобия, то отсек. часть явл

пирамид., подобной данной. Ч.Т.Д.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

БИЛЕТ 17 ОПРЕДЕЛЕНИЕ: Параллелепипед называется прямоугольным , если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.

ТЕОРЕМА: Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Док-во: Докажем,

что

AC12=AB2+AD2+AA12

Так как ребро CC1

перпендикулярно

к основанию ABCD,

то ÐACC1-прямой.

Из прямоугольного

треугольника ACC1

по теореме Пифагора получаем AC12=AC2+CC12.

Но AC -диагональ прямоугольника ABCD, поэтому AC2=AB2+AD2. Кроме того, CC1=AA1.

След-но AC12=AB2+AD2+AA12 Ч.Т.Д.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  


Страница: