БИЛЕТ 2 ОПРЕДЕЛЕНИЕ. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
ТЕОРЕМА. Через точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.
Док-во: проведем ч/з а и
М плоскость a, а ч/з М в
в плоскости a прямую
b| | a. Докажем, что b| | a
единственна.
Допустим, что существует другая прямая b2| | a, и
проходящая ч/з т.М. Через b2 и а можно провести
плоскость a2, которая проходит ч/з М и а, след-но,
по Т.14.1(ЧЕРЕЗ ПРЯМ. И ТОЧКУ НЕ ЛЕЖ. НА
ЭТОЙ ПРЯМОЙ МОЖНО ПРОВЕСТИ ПЛОСКОСТЬ И ПРИТОМ ТОЛЬКО ОДНУ) она
совпадает с a. По аксиоме о параллельных
прямых b2 и а совпадают. Ч.Т.Д.
2. Vус.кон.=1/3*pH(R12+R1R2+R22)
|