Геометрические построенияРефераты >> Математика >> Геометрические построения
Сопряжение дуги с дугой.
Сопряжение двух дуг окружностей может быть внутренним, внешним и смешанным.
При внутреннем сопряжении центры О и О1 сопрягаемых дуг находятся внутри сопрягающей дуги радиуса R (рис. 18,а).
При внешнем сопряжении центры О и О2 сопрягаемых дуг радиусов R и R2 находятся вне сопрягающей дуги радиуса R (рис. 18,б).
При смешанном сопряжении центр О1 одной из сопрягаемых дуг лежит внутри сопрягающей дуги радиуса R, а центр О другой сопрягаемой дуги вне ее(рис. 19)
Построение внутреннего сопряжения.
Задано:
а). радиусы сопрягаемых окружностей R1 и R2;
б). расстояние l1 и l2 между центрами этих дуг;
в). радиус R сопрягающей дуги.
Требуется:
а).определить положение центра О2 сопрягающей дуги;
б).найти точки сопряжения s1 и s2;
в).провести дугу сопряжения.
Построение сопряжения показано на рис. 18,а. По заданным расстояниям между центрами l1 и l2 на чертеже намечают центры О и О1, из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О1 проводят вспомогательную дугу окружности радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой R2, а из центра О -радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой R1. Вспомогательные дуги пересекутся в точке О2, которая и будет искомым центром сопрягающей дуги.
Для нахождения точек сопряжения точку О2 соединяют с точками О и О1 прямыми линиями. Точки пересечения продолжения прямых О2О и О2О1 с сопрягаемыми дугами являются искомыми точками сопряжения(точки s и s1).
Радиусом R из центра О2 проводят сопрягающую дугу между точками сопряжения s и s1.
Построение внешнего сопряжения.
Задано:
а).радиусы R1 и R2 сопрягаемых дуг окружностей;
б).расстояние l1 и l2 между центрами этих дуг;
в).радиус R сопрягающей дуги.
Требуется:
а).определить положение центра О2 сопрягающей дуги;
в).найти точки сопряжения s и s1;
в).провести дугу сопряжения.
Построение внешнего сопряжения показано на рис. 18,б. По заданным расстояниям между центрами l1 и l2 на чертеже находят точки О и О1, из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О проводят вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R1 и сопрягающей R, а из центра О1 -радиусом, равным сумме радиусов сопрягаемой дуги R2 и сопрягающей R. Вспомогательные дуги пересекутся в точке О2, которая будет искомым центром сопрягающей дуги.
Для нахождения точек сопряжения центры дуг соединяют прямыми линиями ОО2 и О2О2. Эти две прямые пересекают сопрягаемые дуги в точках сопряжения s и s1.
Из центра О2 радиусом R проводят сопрягающую дугу, ограничивая ее точками сопряжения s1 и s.
Построение смешанного сопряжения.
Задано:
а).радиусы R1 и R2 сопрягаемых дуг окружностей;
б).расстояния l1 и l2 между центрами этих дуг;
в).радиус R сопрягающей дуги.
Требуется:
а).определить положение центра О2 сопрягающей дуги;
б).найти точки сопряжения s и s1;
в).провести дугу сопряжения.
Построение смешанного сопряжения показано на рис. 19. По заданным расстояниям между центрами l1 и l2 на чертеже намечают центры О и О1, из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О проводят вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R1 и сопрягающей R, а из центра О1 -радиусом, равным разности радиусов R и R2. Вспомогательные дуги пересекутся в точке О2, которая будет искомым центром сопрягающей дуги.
Соединив точки О и О2 прямой, получают точку сопряжения s1; соединив точки О1 и О2, находят точку сопряжения s. Из центра О2 проводят дугу сопряжения от s до s1.
При вычерчивании контура детали необходимо разобраться, где имеются плавные переходы, и представить себе, где надо выполнить те или иные виды сопряжения.
Для приобретения навыков построения сопряжения выполняют упражнения по вычерчиванию контуров сложных деталей. Перед упражнением необходимо просмотреть задание, наметить порядок построения сопряжений и только после этого приступить к выполнению построений.
Коробовые кривые линии.
Некоторые детали машин, инструменты для обработки металлов имеют контуры, ограниченные замкнутыми кривыми линиями, состоящими из взаимносопрягающихся дуг окружностей различных диаметров.
Коробовыми кривыми называются кривые, образованные сопряжением дуг окружностей. К таким кривым относятся овалы, овоиды, завитки.
Построение овала.
Овал- замкнутая коробовая кривая, имеющая две оси симметрии.
Последовательность построения овала по заданному размеру большой оси овала АВ производят следующим образом (рис. 20,а). Ось АВ делят на три равные части (АО1, О1О2, О2В). Радиусом, равным О1О2, из точек деления О1 и О2 проводят окружности, пересекающиеся в точках m и n.
Соединив точки n и m с точками О1 и О2, получают прямые nО1, nО2, mО1, mО2, которые продолжают до пересечения с окружностями. Полученные точки 1,2,3, и 4 являются точками сопряжения дуг. Из точек m и n, как из центров, радиусом R1, равным n2 и m3, проводят верхнюю дугу 12 и нижнюю дугу 34.
Построение овала по двум заданным осям AB и CD приведено на рис. 20,б.
Проводят оси АВ и СD. Из точки их пересечения радиусом ОС(половина малой оси овала) проводят дугу до пересечения с большой осью овала АВ в точке N. Точку А соединяют прямой с точкой С и на ней от точки С откладывают отрезок NB, получают точку N. В середине отрезка AN1 восставляют перпендикуляр и продолжают его до пересечения с большой и малой осями овала в точках О1 и n. Расстояние ОО1 откладывают по большой оси овала вправо от точки О, а расстояние on от точки О откладывают по малой оси овала вверх, получают точки n1 и О2. Точки n и n1 являются центрами верхней дуги 12 и нижней дуги 34 овала, а точки О1 и О2-центрами дуг 13 и 24. Получают искомый овал.
Построение овоида.
Овоид- замкнутая коробовая кривая,имеющая только одну ось симметрии. Радиусы R и R1 дуг окружностей, центры которых лежат на оси симметрии овоида, не равны друг другу(рис. 20,в).
Построение овоида по заданной оси АВ выполняется в следующей последовательности (рис. 20,в).
Проводят окружность диаметром, равным оси АВ овоида. Из точек А и В через точку О1(точка пересечения окружности радиуса R с осью симметрии) проводят прямые. Из точек А и В, как из центров, радиусом R2, равным оси АB, проводят дуги An и Bm, а из центра О1 радиусом R1 проводят малую дугу овоида nm.