Геометрические построения
Рефераты >> Математика >> Геометрические построения

Деление отрезка прямой на любое число равных частей.

Пусть отрезок АВ требуется разделить на шесть равных частей. Для этого из любого конца данного отрезка, например из точки В (рис.2) , проводят под произвольным острым углом вспомогательную прямую линию ВС, на которой от точки В измерительным циркулем откладывают 6 равных отрезков произвольной величины. Крайнюю точку 6 последней отложенной части соединяют с точкой А прямой АВ . Затем с помощью линейки и угольника проводят ряд прямых параллельных прямой 6А, которые и разделяют отрезок АВ на 6 равных частей.

Построение углов.

Построение и измерение углов транспортиром.

Транспортир - это прибор для измерения и построения углов. Это полукруг с разбивкой на градусы, соединенный с опорной планкой. Для измерения угла транспортир прикладывают опорной планкой к одной из сторон данного угла так, чтобы вершина угла (точка А) совпадала с точкой О на транспортире. Величину угла САВ в градусах определяют по шкале транспортира.

Для построения угла заданной величины (в градусах) со стороной АВ и вершиной в точке А к АВ прикладывают транспортир так, чтобы его центр (точка О)совпал с точкой А прямой АВ, затем у деления шкалы транспортира, соответствующего заданному числу градусов, наносят точку n. Транспортир убирают и проводят через точку n отрезок АС - получают заданный угол САВ.

Углы можно строить при помощи угольников и линейки. На рис.3 показано, как при различных положениях угольников на линейке можно строить углы 60 градусов (120 градусов), 30 градусов (150 градусов), 45 градусов (135 градусов) и другие при использовании одновременно двух угольников.

Деление угла на две и четыре равные части.

Из вершины угла провести произвольным радиусом дугу до пересечения со сторонами угла ВАС в точках n и k (рис. 4,а). Из полученных точек проводят две дуги радиусом R, несколько большим половины длины дуги nk, до взаимного пересечения в точке m. Вершину угла соединяют с точкой m прямой, которая делит угол ВАС пополам. Эта прямая называется биссектрисой угла ВАС . Повторяя это построение с полученными углами ВАm и mАС угол ВАС можно разделить на четыре и более равных частей.

Деление прямого угла на три равные части.

Из вершины А прямого угла (рис. 4,б) произвольным радиусом R описывают дугу окружности до пересечения ее со сторонами прямого угла в точках а и в, из которых проводят дуги окружности того же радиуса R до пересечения с дугой ab в точках m и n. Точки m и n соединяют с вершиной угла А прямыми и получают стороны Аm и Аn углов ВAm и nАС, равных 1/3 прямого угла , т.е. 30 градусов. Если каждый из этих углов разделить пополам , то прямой угол будет разделен на шесть равных частей , каждый из углов будет равняться 15 градусам . Прямой угол АВС можно разделить на три равные части угольником с углами 30 градусов и 60 градусов ( рис. 5,а). При выполнении чертежей нередко требуется разделить прямой угол на две равные части . Это можно выполнять угольником с углом 45 градусов (рис. 5,б).

Построение угла, равного данному.

Пусть задан угол ВАС . Требуется построить такой же угол. Через произвольную точку А1 проводим прямую А1С1 . Из точки А описываем дугу произвольным радиусом R, которая пересечет угол ВАС в точках m и n (рис. 6,а). Из точки А1 проводим дугу тем же радиусом и получаем точку m1 . Из точки m1 проводим дугу радиусом R1 , равным отрезку mn, до пересечения с ранее проведенной дугой радиуса R в точке n1 (рис. 6,б). Точку n1 соединяем с точкой А1 и получаем угол В1А1С1, величина которого равна заданному углу ВАС.

Деление окружностей.

Деление окружности на четыре и восемь равных частей.

Необходимо разделить окружность на восемь равных частей. Это можно сделать с помощью угольника с углами 45 градусов (рис. 7,б) , гипотенуза угольника должна проходить через центр окружности , или построением.

Два взаимно перпендикулярных диаметра окружности делят ее на четыре равные части (точки 1,3,5,7 на рис. 7,а). Чтобы разделить окружность на восемь равных частей, применяют известный прием деления прямого угла с помощью циркуля на две равные части. Получают точки 2,4,6,8.

Деление окружности на три, шесть и двенадцать равных частей.

Для нахождения точек, делящих окружность радиуса R на три равные части, достаточно из любой точки окружности, например точки А , провести дугу радиусом R . Пересечения дуги с окружностью дают две искомые точки 2 и 3; третья точка деления будет находиться на пересечении оси окружности, проведенной из точки А1 с окружностью (рис. 8,а).

Разделить окружность на три равные части можно также угольником с углами 30 градусов и 60 градусов (рис. 8,б), гипотенуза угольника должна проходить через центр окружности.

На рис. 9,а показано деление окружности циркулем на шесть равных частей. В этом случае выполняется то же построение, что на рис. 8,а , но дугу описывают не один, а два раза , из точек 1 и 4 радиусом R, равным радиусу окружности.

Разделить окружность на шесть равных частей можно и угольником с углами 30 и 60 градусов (рис. 9,б).

При делении окружности на 12 равных частей с помощью циркуля можно использовать тот же прием, что и при делении окружности на шесть равных частей (рис. 9,а), но дуги радиусом R описывают четыре раза из точек 1,7,4,10 (рис. 10,а).

Используя угольник с углами 30 и 60 градусов с последующим поворотом его на 180 градусов, делят окружность на 12 равных частей (рис. 10,б)

Деление окружности на пять, десять и семь равных частей.

Через намеченный центр О (рис. 11) при помощи рейсшины и угольника проводят осевые линии и из точки О циркулем описывают окружность заданного диаметра. Из точки А радиусом R, равным радиусу данной окружности, проводят дугу, которая пересечет окружность в точке n. Из точки n опускают перпендикуляр на горизонтальную осевую линию, получают точку С. Из точки С радиусом R1, равным расстоянию от точки С до точки 1, проводят дугу, которая пересечет горизонтальную осевую линию в точке m. Из точки 1 радиусом R2, равным расстоянию от точки 1 до точки m, проводят дугу, пересекающую окружность в точке 2. Дуга 12 является 1/5 длины окружности. Точки 3,4,5 находят, откладывая циркулем отрезки, равные m1. Следует окружность разделить на 10 равных частей (рис. 12). В этом случае следует применить то же построение, что и при делении окружности на пять частей (см. рис. 11). Отрезок n1 будет равняться хорде , которая делит окружность на 10 равных частей.


Страница: