Геометрические построения
Рефераты >> Математика >> Геометрические построения

Деление окружности на семь равных частей показано на рис. 13. Из точки А проводится вспомогательная дуга радиусом R , равным радиусу данной окружности, которая пересечет окружность в точке n. Из точки n опускают перпендикуляр на горизонтальную осевую линию. Из точки 1 радиусом, равным отрезку nc , делают по окружности семь засечек и получают семь искомых точек.

Деление окружности на любое число равных частей.

С достаточной точностью можно делить окружность на любое число равных частей, пользуясь таблицей коэффициентов для подсчета длины хорды(табл. 1)

Зная, на какое число (n) следует разделить окружность, находят по таблице коэффициент k. При умножении коэффициента k на диаметр окружности D. получают длину хорды l, которую циркулем откладывают на окружности n раз.

Например, необходимо окружность диаметра D=42 мм разделить на 20 равных частей. Количеству частей окружности n=20 соответствует коэффициент k=0,156. Подсчитав длину хорды l=Dk=42х0,156=6,552 мм, ее циркулем откладывают на окружности 20 раз (рис. 14).

таблица 1.

Коэффициенты для подсчета длины хорды.

Число частей

n

коэффициент

k

Число частей

n

коэффициент

k

Число частей

n

коэффициент

k

7

0,434

17

0,184

27

0,116

8

0,383

18

0,174

28

0,112

9

0,342

19

0,165

29

0,108

10

0,309

20

0,156

30

0,104

11

0,282

21

0,149

31

0,101

12

0,259

22

0,142

32

0,098

13

0,239

23

0,136

33

0,095

14

0,223

24

0,130

34

0,092

15

0,208

25

0,125

35

0,900

16

0,195

26

0,120

36

0,087

Сопряжение линий.

При вычерчивании деталей машин и приборов, контуры очертаний которых состоят из прямых линий и дуг окружностей с плавными переходами от одной линии в другую, часто применяют сопряжения. Сопряжением называется плавный переход одной линии в другую.

Для точного и правильного выполнения чертежей необходимо уметь выполнять построения сопряжений, которые основаны на двух положениях.

1. Для сопряжения прямой линии и дуги необходимо, чтобы центр окружности, которой принадлежит дуга, лежал на перпендикуляре к прямой, восставленном из точки сопряжения (рис. 15,а).

2. Для сопряжения двух дуг необходимо, чтобы центры окружностей, которым принадлежат дуги, лежали на прямой, проходящей через точку сопряжения (рис. 15,б).

Сопряжение двух сторон угла дугой окружности заданного радиуса.

При выполнении чертежей деталей, выполняют построение сопряжения двух сторон угла дугой окружности заданного радиуса. На рис. 16,а выполнено построение сопряжения сторон острого угла дугой, на рис. 16,б- тупого угла, на рис. 16,в- прямого.

Сопряжение двух сторон угла (острого или тупого) дугой заданного радиуса R выполняют следующим образом (рис. 16,а и б).

Параллельно сторонам угла на расстоянии, равном радиусу дуги R, проводят две вспомогательные прямые линии. Точка пересечения этих прямых (точка О) будет центром дуги радиуса R, т.е. центром сопряжения. Из центра О описывают дугу, плавно переходящую в прямые - стороны угла. Дугу заканчивают в точках сопряжения n и n1, которые являются основаниями перпендикуляров, опущенных из центра О на стороны угла.

При построении сопряжения сторон прямого угла центр дуги сопряжения проще находить с помощью циркуля (рис. 16,в). Из вершины угла А проводят дугу радиусом R, равным радиусу сопряжения. На сторонах угла получают точки сопряжения n и n1. Из этих точек, как из центров , проводят дуги радиусом R до взаимного пересечения в точке О, являющейся центром сопряжения. Из центра О описывают дугу сопряжения.

Сопряжения прямой с дугой окружности.

Сопряжение прямой с дугой окружности может быть выполнено при помощи дуги с внешним касанием (рис. 17).

На рис. 17 показано сопряжение дуги окружности радиусом R и прямой линии АВ дугой окружности радиуса r с внешним касанием. Для построения такого сопряжения проводят окружность радиуса R и прямую АВ. Параллельно заданной прямой на расстоянии, равном радиусу r (радиус сопрягающей дуги), проводят прямую ab. Из центра О проводят дугу окружности радиусом , равным сумме радиусов R и r, до пересечения ее с прямой ab в точке О1. Точка О1 является центром дуги сопряжения.

Точку сопряжения c находят на пересечении прямой ОО1 с дугой окружности радиуса R. Точка сопряжения c1 является основанием перпендикуляра, опущенного из центра О1 на данную прямую АВ. При помощи аналогичных построений могут быть найдены точки О2, с2, с3.


Страница: