Экзаменационные билеты
((A→B)&(B→C)) → (A→C), если (если А, то В) и (если В, то С), то (если А, то С).
Законами ассоциативности называются логические законы, позволяющие по-разному группировать высказывания, соединяемве с помощью «и», «или» и др. Операции сложения и умноженгия чисел в математике ассоциативны:
(a + b) + c = a + (b + c),
(a x b) x c = a x (b x c).
Ассоциативностью обладают также логическое сложение (дизъюнкция) и логическое умножение (конъюнкция). Символически соответствующие законы представляются так:можно опускать скобки.
(A v B) v C ↔ A v (B v C),
(A & B) & C ↔ A & (B & C).
В силу законов ассоциативности в формулах, представляющих конъюнкцию более чем двух
высказываний или их дизъюнкцию.
Законами коммутативности называют логическаие законы, позволяющие менять местами высказывания, связанные «и», «или», «если и только если» и др. Эти законы аналогичны алгебраическим законам коммутативности для умножения, сложения и др., по которым результат умножения не зависит от порядка множителей, сложения – от порядка слагаемых и т.д.
Символически законы коммутативности для конъюнкции и дизъюнкции записываются так:
(A & B) ↔ (B & A), Aи В тогда и только тогда, когда В и А;
(A v B) ↔ (B v A), А или В, если и только если В или А.
14. Категорические высказывания: структура и виды
Категорическое высказывание (категорическое суждение) – это высказывание, в котором утверждается или отрицается наличие какого-то признака у всех или некоторых предметов рассматриваемого класса. Например, в высказывании «Все динозавры вымерли» всем динозаврам приписывается признак «быть вымершими». Существует два варианта таких высказываний: утвердительный и отрицательный. Их структура:
«S есть Р» и «S не есть Р», где буква S представляет имя того предмета, о котором идет речь в высказывании, а буква Р – имя признака, присущего или не присущего этому предмету.
Предмет, о котором говорится в категорическом высказывании, называется субъектом, а его признак – предикатом. Субъект и предикат именуются терминами категорического высказывания и соединяются между собой связкой «есть» или «не есть» и т. п. Например, в высказывании «Солнце есть звезда» терминами являются «Солнце» и «звезда» (первый из них – субъект высказывания, второй – его предикат), а слово «есть» - связка.
Простые высказывания типа «S есть (не есть) Р» называются атрибутивными: в них осуществляется атрибуция (приписывание) какого-то свойства предмету.
Атрибутивным высказываниям противостоят высказывания об отношениях, в которых устанавливаются отношения между двумя или большим числом предметов: «Три меньше пяти», «Киев больше Одессы» и т. п.
В категорических высказываниях утверждается или отрицается принадлежность каких-то признаков рассматриваемым предметам и указывается, идет ли речь обо всех этих предметах или же о некоторых из них. Возможны, таким образом, четыре вида категорических высказываний.
Все S есть Р – общеутвердительное высказывание,
Некоторые S есть Р – частноутвердительное высказывание,
Все S не есть Р – общеотрицательное высказывание,
Некоторые S не есть Р – частноотрицательное высказывание.
15. Отношения между категорическими высказываниями: «логический квадрат»
Некоторые отношения между четырьмя видами категорических высказываний графически представляются так называемым логическим квадратом.
Обозначим оборот «Все . есть .» буквой a, оборот «Некоторые . есть .» буквой i, оборот «Все . не есть .» буквой е и оборот «Некоторые . не есть .» буквой о. (Каждое из этих выражений является логической постоянной.)
SaP – «Все S есть Р» - «Все жидкости упруги»,
SiP – «Некоторые S есть Р» - «Некоторые животные говорят»,
SeP – «Все S не есть Р» - «Все дельфины не есть рыбы»,
SoP – «Некоторые S не есть Р» - «Некоторые металлы не есть жидкости».
SaP противные SeP
SiP противные SoP
Противоречащие высказывания (SaP и SoP; SeP и SiP) не могут быть одновременно истинными и ложными; если одно из них истинно, то другое ложно. Если высказывание «Некоторые медведи – не бурые» истинно, то высказывание «Все медведи – бурые» ложно.
Противные высказывания (SaP и SeP), в отличие от противоречащих, могут быть вместе ложными, но не могут быть вместе истинными. Поскольку высказывание «У всех людей есть головы» истинно, то высказывание «Ни у одного человека нет головы» ложно.
Подпротивные высказывания (SiP и SoP) не могут быть одновременно ложными, но могут быть одновременно истинными. Так, если высказывание «Некоторые овцы – хищники» ложно, то высказывание «(По меньшей мере) некоторые овцы не являются хищниками» истинно. Высказывания же «Некоторые спортсмены – футболисты» и «Некоторые спортсмены не футболисты» оба истинны.
В отношении подчинения находятся попарно высказывания SaP и SiP, SeP и SoP. Из подчиняющего высказывания логически следует подчиненное: из SaP вытекает SiP и из SeP вытекает SoP. Это означает, что из истинности подчиняющего высказывания логически следует истинность подчиненного, и из ложности подчиненного следует ложность подчиняющего. К примеру, из высказывания «Все киты являются млекопитающими» следует высказывание «Некоторые киты млекопитающие».
16. Обращение и превращение категорических высказываний
Обращением называется преобразование высказывания, в результате которого субъект исходного высказывания становится предикатом результирующего, а предикат исходного – субъектом результирующего.
Превращением называется преобразование суждения в суждение, противоположное по качеству с предикатом, противоречащим предикату исходного суждения. Например:
Только люди верят в конец света
Нет человека, не верящего в гармонию мира
_
Никто из неверящих в гармонию мира не верит
в конец света
Обращение: Все, кто верят в конец света, являются людьми
Превращение: Все люди верят в гармонию мира.
Противопоставление предиката: Все, кто верят в конец света, верят в гармонию мира.
17. Категорический силлогизм: фигуры и модусы
Категорический силлогизм – это дедуктивное умозаключение, в котором из двух категорических
высказываний выводится новое категорическое высказывание.
Термины силлогизма не должны быть пустыми или отрицательными. Пример силлогизма:
Все жидкости упруги.
Вода – жидкость.
Вода упруга.
В каждом силлогизме должно быть три термина: меньший, больший и средний. Меньшим термином называется субъект заключения («вода») – S. Большим термином именуется предикат заключения («упруга») – P. Термин, присутствующий в посылках, но отсутствующий в заключении, называется средним («жидкость») – M. Посылка, в которую входит больший термин, называется большей. Посылка с меньшим термином называется меньшей. Большая посылка записывается первой, меньшая – второй. Логическая форма приведенного силлогизма такова: