Экзаменационные билеты
Рефераты >> Логика >> Экзаменационные билеты

1. Предмет и значение логики

Логика как средство познания объективного мира изучает абстрактное мышление, исследует его формы (понятия, суждения и умозаключения) и законы, в которых происходит отражение мира в процессе мышления.

Предметом теоретической логики, то есть областью ее исследования, являются логические формы, в которых протекает теоретическое познание, - понятия, суждения и рассуждения.

Методологическое значение теоретической логики заключается в том, что в сфере ее исследования разрабатываются, анализируются методологически важные понятия – определение, классификация, доказательство, гипотеза, теория и т.д., которые являются необходимым инструментарием, конкретными операциями научно-исследовательской практики.

2. Логическая грамматика: семантические категории и функторы

Подразделение речевых оборотов на семантические категории производится в зависимости от того, что эти обороты означают. Два выражения считаются относящимися к одной и той же семантической категории рассматриваемого языка, если замена одного из них другим в произвольном осмысленном предложении не превращает это предложение в бессмысленное. Наоборот, два выражения всегда относятся к разным категориям, если подстановка одного из них вместо другого ведет к утрате осмысленности.

Согласно теории семантических категорий, каждое правильно построенное выражение языка принадлежит одной и только одной из семантических категорий. В принципе этих категорий бесконечное число, и они составляют весьма разветвленную иерархию.

В нее входят две основные категории и бесконечная совокупность так называемых функторных категорий. К основным относятся категория имен и категория предложений (высказываний).

Оставляя в стороне сложные и спорные детали теории семантических категорий, можно ограничиться выделением трех основных категорий языковых выражений: имен, предложений (высказываний) и функторов.

Именами являются языковые выражения, подстановка которых в форму “S есть P” вместо переменных S и P дает осмысленное предложение.

Предложение (высказывание) – это языковое выражение, являющееся истинным или ложным

Функтор – это языковое выражение, не являющееся ни именем, ни высказыванием и служащее для образования новых имен или высказываний из уже имеющихся. Например, слово «есть» - это функтор, поскольку оно не представляет собой имени или высказывания, но позволяет из двух имен получить высказывание. Функторы, позволяющие из имен или высказываний получать новые высказывания, называются пропозициональными.

3. Имена и виды имен

Имя – это слово или словосочетание, обозначающее какой-либо определенный предмет или класс однородных предметов. Хотя предметы изменчивы, текучи, в них сохраняется качественная определенность, относительно покоящаяся сущность, которую и обозначает имя данного предмета. Выражение языка является именем, если оно может использоваться в качестве подлежащего или именной части сказуемого в простом предложении “S есть P” (S – подлежащие, P – сказуемое).

Имена различаются между собой в зависимости о того, сколько предметов они означают. Единичные имена обозначают один и только один предмет. Общие имена обозначают более чем один предмет. Единичным именем является к примеру слово «Солнце», обозначающее единственную звезду в Солнечной системе. К общим относятся имена «человек», «женщина», «школьник» и т.п. Все эти имена связаны с множествами, или классами, предметов. При этом имя относится не к множеству как единому целому, а к каждому входящему в него предмету.

Среди общих имен особое значение имеет понятия.

Понятие представляет собой общее имя с относительно ясным и устойчивым содержанием, используемое в обычном языке или в языке науки. Отчетливой границы между теми именами, которые можно назвать понятиями, и теми, которые не относятся к понятиям, не существует.

Имена можно разделить также на пустые, или беспредметные, и непустые. Пустое имя не обозначает ни одного реально существующего предмета. Имя, не являющееся пустым, отсылает хотя бы к одному реальному объекту. К пустым относятся, к примеру, имена «Зевс», «Пегас», «кентавр», созданные мифологией и обозначающие вымышленных, отсутствующих в реальном мире существ. Пустыми являются также имена «идеальный газ», «абсолютно черное тело», «точка», «линия», используемые в физике и математике и обозначающие не реально существующие, а идеализированные предметы.

Имена подразделяются далее на конкретные и абстрактные. Конкретное имя обозначает физические тела или живые существа. Абстрактное имя обозначает объекты, не являющиеся индивидами. К конкретным относятся, например, имена «стол», «тетрадь», «лес», «звезда» и т. п. Абстрактными являются имена свойств, отношений, классов, чисел и т. п.: слово «черный» может рассматриваться как обозначение свойства «черноты». Абстрактными являются также имена «человечность», «справедливость», «законность» и т. п.

4. Отношения между именами

Имена относятся в различных отношениях друг к другу. Между объемами двух произвольных имен, которые есть какой-то смысл сопоставлять друг с другом, имеет место одно и только одно из следующих отношений: равнозначность, пересечение, подчинение (два варианта) и исключение.

Равнозначными являются два имени, объемы которых полностью совпадают. Иными словами,

равнозначные имена отсылают к одному и тому же классу предметов, но делают

S,P

это разными способами. («квадрат» и «равносторонний прямоугольник»).

Равнозначность означает совпадение объемов двух имен, но не их содержаний.

Например, объемы имен «сын» и «внук» совпадают (каждый сын есть чей-то внук и каждый внук – чей-то сын), но содержания их различны.

В отношении пересечения находятся два имени, объемы которых частично совпадают. Пересекаются, в частности, объемы имен «летчик» и «космонавт»: некоторые летчики являются космонавтами, есть летчики, не являющиеся космонавтами, и есть космонавты, не являющиеся летчиками.

Подпись: P

В отношении подчинения находятся имена, объем одного из которых полностью входит в объем другого. В отношении подчинения находятся, к примеру, имена «треугольник» и «прямоугольный треугольник»: каждый прямоугольный треугольник является треугольником, но не каждый реугольник прямоугольный. Если в отношении подчинения находятся общие имена, то подчиняющее имя называется родом, а подчиненное – видом. Имя «треугольник» есть род для вида «прямоугольный треугольник».


Страница: