Элементы статистической термодинамики
Рефераты >> Химия >> Элементы статистической термодинамики

14) Статистические суммы молекулы H2:

14.1) Поступательная

q0t (H2) = [2´p´3.320´10-27´1.38´10-23´3000] 3/2 ¸(6.62´10-34) 3=

= (8.636´10-46) 3/2¸(6.62´10-34) 3= 25.378´10-69¸290.12´10-102=8.7474´1031

14.2) Вращательная

q0r (H2) = 8´p2´I ´1.38´10-23´3000/h2 =3.269´10-18´ I/(6.62´10-34) 2 =

=3.269´4.565´10-66/43.824´10-68 =34.05

Момент инерции: I(H2) = 4.565´10-48 кг´м2

14.3) Колебательная от нулевого колебательного уровня

q0v (H2) =1/{1 - exp(-h/ kT) }= 1/ (1-0.1214) =1/0.8786=1.1382.

14.4) Электронная (отсчёт энергий нулевых уровней - от свободных атомов H)

q0el (H2) = 1´ exp [-E e(H2) / kT] = exp [D0(H2) / kT] = exp(17.324) = 3.3398´107.

14.5) Мольная q0 (H2) = 0.2462 ´ 8.7474 ´ 1031 ´ 34.05 ´ 1.1382 ´ 3.3398´107=2.78755´1040.

14.6) Молекулярная статсумма H2 (2-й сомножитель в Kp):

Q(H2) = 2.78755´1040/6.023´1023=4.63´1016.

15) Статистические суммы атома H:

15.1) Поступательная

q 0t (H) = [2´p´1.66´10-27´1.38´10-23´3000] 3/2 ¸(6.62´10-34) 3=

=(5. 194´10-46) 3/2¸290.12´10-102= 11.837´10-69¸290.12´10-102= 4.080´1031

15.2) Электроннаяq 0el (H) = gel (H, терм 2S) = 2.

15.3) Мольная q0 (H) = 4.080´1031´2 =8.160´1031.

15.4) Молекулярная статсумма атома H (3-й сомножитель в Kp):

Q(H) = 0.2462´8.160´1031/6.023´1023=3.3336´107.

16) Константа равновесия Kp (безразмерная):

Kp= [Q0(H2)] - 1 ´ [Q0(H)] 2

Kp = [4.63´1016] -1´ (3.3336´107) 2 =1.1113´1015´ [4.63´1016] -1=0.02400

17) Степень диссоциации определяется следующими выражениями:

H2 = 2H·®М атериальный баланс в следующей строке:

(1-a) ´p0 2a´ p0®Далее две равновесные мольные доли

a) X*(H2) =(1-a) /(1+a),

b) X*(H) = 2a/(1+a).

Равновесные парциальные давления – доли от общего равновесного давления:

d) p*(H2) = [(1-a) /(1+a)] ´p*,

e) p*(H·) = [2a/(1+a)] ´p*.

По условию задачи общее давление 1 атм.

®Константа равновесия равна:

Kp = [2a/(1+a)] 2/ [(1-a) /(1+a)] =4a2/(1-a2) = 0.024.

Получилось уравнение: 4a2/(1-a2) = 0.024.

А) РЕШЕНИЕ: 4.024´a2 = 0.024; ® a = 0.0772.

ЗАДАЧА 11. (Д-О 17.28)

Рассчитать константу равновесия при 298 К для реакции.

H2 (газ) + D2 (газ) =2HD (газ)

Недостающие частоты валентных колебаний найти, пользуясь приближением гармонического осциллятора. Считать силовые константы и межатомные расстояния одинаковыми.

РЕШЕНИЕ.

Предварительные вычисления

Все силовые константы одинаковы (w2) = (w2) = (w2) =const, и отсюда следует

Пропорция частот колебаний связей:

n(HD): n(H2): n(D2) = (HD) - ½:  (H2) - ½: (D2) - ½ =

= [ (H2) / (HD)] ½: 1:  [(H2) / (D2)] ½ = (3/4) ½: 1: (1/2) ½ = 0.866: 1: 0.707

n(HD): n(H2): n(D2) =0.866: 1: 0.707

Отсюда определяются волновые числа колебаний:

n(H2) = 4405 см-1

n(HD) = 4405´0.866=3815 см-1

n(D2) = 4405´0.707 =3114 см-1

Далее получаются собственные частоты колебаний:

n0(H2) = 3´1010´4405 с-1=1.3215´1014 с-1

n0(HD) =3´1010´3815 с-1=1.1445´1014 с-1

n0(D2) = 3´1010´3114 с-1=9.342´1013 с-1

Колебательные кванты:

hn0(H2) =6.62´10-34 Дж´с ´ 1.3215´1014 с-1 =8.748´10-20 Дж

hn0(HD) =6.62´10-34´1.1445´1014 с-1 =7.577´10-20 Дж

hn0(D2) = 6.62´10-34´9.342´1013 с-1 =6.1844´10-20 Дж

Тепловой "квант" kT =1.38´10-23´298 Дж =4.112´10-21 Дж

Показатели больцмановских факторов для колебаний:

hn0(H2) / kT =8.748´10-20 Дж/4.112´10-21 Дж=21.27

hn0(HD) / kT =7.577´10-20 Дж/4.112´10-21 Дж=18.43

hn0(D2) / kT =6.1844´10-20 Дж/4.112´10-21 Дж=15.04

Все hn0 >> kT

Больцмановские факторы для колебаний практически нулевые:

exp(-21.27) @0

exp(-18.43) @0

exp(-15.04) @0

Колебательные статистические суммы все равны 1:

qV 0(HD) = [1-exp(-hn0(HD) / kT)] @1

qV 0(H2) = [1-exp(-hn0(H2) / kT)] @1

qV 0(D 2) = [1-exp(-hn0(D2) / kT)] @1

Колебательные суммы состояний равны 1 с большой точностью.

Приращение нулевой энергии (теплота реакции при T=0 K)

DrUo=(1/2NA) [2h0HD h0H2 h0D2] ;

DrUo =0.5´6.023´1023´ [2´7.577-8.748-6.1844] ´10-20=3.0125´220=662.75 Дж.

Показатель фактора Больцмана для приращения нулевой энергии:

DrUo/ RT =662.75 Дж /(8.314´298) Дж=0.268

Фактор Больцмана для приращения нулевой энергии:

exp(-DrUo/ RT) = exp(-0.268) = 0.765

Константа равновесия

K= [M(HD) 2´M(H2) - 1´M(D2) - 1] 3/2´ [I(HD) 2´I(H2) - 1´I(D2) - 1] ´ [s(H2) ´s (D2)] [´[qV 0 (HD)] 2 ´ [qV 0(H2)] - 1´ [qV 0(D2)] - 1 ´ exp(-DrUo/ RT) = [M(HD) 2M(H2) - 1´M(D2) - 1] 3/2´ [(HD) 2´(H2) - 1´(D2) - 1] ´ [2´2] ´exp(-DrUo/ RT)

K= [M(HD) 2´M(H2) - 1´M(D2) - 1] 3/2´ [ (HD) 2´ (H2) - 1´(D2) - 1] ´ [2´2] ´exp(-DrUo/ RT) =

K= [(1+2) 2 ´(1/2) ´ (1/4)] 3/2 ´ [(2/3) 2´2´1] ´ [2´2] ´ 0.765=

K= (9/8) 3/2´ (8/9) ´ 4´0.765=(9/8) 1/2´4´0.765=3.246

Резюме:

В этой задаче колебательные статистические суммы не играют роли. Они все равны 1. Из-за равенства структурных параметров играют роль лишь энергии остаточных колебаний, а также лишь отношения масс, приведённых масс молекул, а также чисел симметрии.

ЗАДАЧА 12.

Рассчитать константу равновесия для реакции газообразного водорода с газообразным тритием.

H2 (газ) + T2 (газ) =2HT (газ)

Недостающие частоты валентных колебаний найти, пользуясь приближением гармонического осциллятора. Считать силовые константы и межатомные расстояния одинаковыми.


Страница: