Элементы статистической термодинамики
Рефераты >> Химия >> Элементы статистической термодинамики

17) Константа равновесия Kp (безразмерная):

Kp= [Q0(CO)] -1 ´Q0(C) ´Q0(O)

Kp = (1.72´109) ´(2.647´109) ´ [6.21´1039] -1=1.72´2.647´0.161´109´109´10-39=7.33´10-22.

Безразмерны статистические суммы и полученная константа безразмерна.

Её модуль тот же, что и у Kp, где размерностью давления является атмосфера.

Резюме:

Полученный нами результат заметно лучше того, что приведён в учебнике. Это наглядная иллюстрация больших преимуществ современной электронной вычислительной техники, тогда как в учебнике расчёты выполнялись старыми способами – по таблицам и логарифмической линейке. Отклонение от экспериментальной величины и его квадрат у нас меньше:

У нас: [(7.330-7.427) / 7.427] 2 =1.71´10-4´100%=0.017% ®|= 0.13%,

У Д-О: [(7.790-7.427) / 7.427] 2 =2.39´10-3´100%=0.239% ®|= 0.49%.

ЗАДАЧА 9. (Д-О 17.16)

Для реакции, протекающей при 698.2 К в газовой фазе

H2 (газ) + I2 (газ) =2 HI (газ)

на основании экспериментальных измерений получена константа равновесия

K698.2= [HI] * 2/([H2] * [I2] *) =54.5.

Рассчитать эту же величину статистическим методом, если DrU0o= - 9.728 кДж/моль

РЕШЕНИЕ.

Таблица 1. Структурные параметры частиц. (Табл.15.2 (Д-О, стр.467).

 

M, г/моль

I´1048, кг´м2

s

H2

2.016

4.59

2

4405

I2 (газ)

256

7430

2

214

HI (газ)

129

43.1

1

2309

1) Предварительные расчёты колебательных частот и факторов Больцмана

Тепловой "квант" равен kT=1.38´10-23´698.2=9.6352´10-21 Дж

Колебательные характеристики молекул:

H2: (H2) = c´4405=3´1010 (см/с) ´ 4405(1/см) = 1.3215´1014 (1/с)

h(H2) = 6.62´10 - 34(Дж´с) ´ 1.3215´1014 (1/с) = 8.748´10 - 20 Дж

h/kT=8.748´10 - 20 Дж/9.6352´10-21 Дж=9.08

exp(-h/kT) = exp(-9.08) =0.000114;

q0V (H2) = [1-exp(-h/kT)] -1=0.999886-1@1;

I 2: (I 2) = c´214=3´1010 (см/с) ´ 214(1/см) = 6.42´1012 (1/с)

h(I 2) = 6.62´10 - 34(Дж´с) ´ 6.42´1012 (1/с) = 4.25´10 - 21 Дж

h/kT=4.25´10 - 21 Дж/9.6352´10-21 Дж=0.441

exp(-h/kT) = exp(-0.441) =0.643;

q0V(I 2) = [1-exp(-h/kT)] -1=0.357-1@2.80;

HI: (I 2) = c´2309=3´1010 (см/с) ´ 2309 (1/см) = 6.93´1013 (1/с)

h(I 2) = 6.62´10 - 34(Дж´с) ´ 6.93´1013 (1/с) = 4.588´10 - 20 Дж

h/kT=4.588´10 - 20 Дж/9.6352´10-21 Дж=4.762

exp(-h/kT) = exp(-4.762) =0.00855;

q0V(I 2) = [1-exp(-h/kT)] -1=0.99145-1@1;

Показатель электронного сомножителя в константе равновесия:

DU0o/RT = - 9728/(8.314´698.2) = - 1.676

Сам электронный сомножитель в константе равновесия:

exp(-DU0o/RT) = exp(1.676) = 5.348

2) Константа равновесия

Число частиц за пробег реакции не изменятся Drn=0;

K=Kc=Kp= [Q0(H2)] - 1 [Q0(I2)] - 1 [Q0(HI)] 2; ®

Сокращается большинство численных коэффициентов и остаётся:

K= [M(HI) 2M(H2) - 1´M(I2) - 1] 3/2 ´ [I(HI) 2´I(H2) - 1´I(I2) - 1] ´ [s(H2) s (I2) /s (HI) 2] [´ [q0(HI)] 2´ [q0(H2)] - 1´ [q0(I2)] - 1´exp(-DU0o/RT);

Из набора молекулярных параметров играет роль множитель:

[M(HI) 2´M(H2) - 1´M(I2) - 1] 3/2´ [I(HI) 2/I(H2) ´I(I2)] ´ [s(H2) ´s (I2) /s (HI) 2] = [1292/(2.016´256)] 3/2´ [43.12/(4.597´7430)] ´(2´2/12) =0.031´18.136´4=183.1´0.0544´4=39.84.

Колебательные статистические суммы

[q0(HI)] –2 @ 1.

[q0(H2)] @1.

[q0(I2)] =2.80.

Электронный сомножитель:

exp(-DU0o/RT) = exp(1.676) = 5.348

Константа равновесия равна:

K=5.348´39.84/2.80=76.1.

Резюме:

Простота приближений и пренебрежение специфическими спиновыми эффектами ядер, приводят к выводу о том, что согласие теории и эксперимента очень хорошее. Отличие составляет всего 30%.

ЗАДАЧА 10. (Д-О 17.27)

Рассчитать статистическим методом константу равновесия и степень диссоциации H2(газ) при 3000 K и 1 атм. При этих условиях Лэнгмюр изучил протекающую в газовой фазе реакцию

H2 (газ) =2H (газ) и нашёл a=0.072. Учтите, что вследствие электронного спина основное состояние атома водорода дважды вырождено (gel=2).

РЕШЕНИЕ.

Предварительные вычисления

Тепловой "квант" kT =1.38´10-23´3000 Дж = 4.14´10-20 Дж

Стандартный мольный объём V0= (RT/p0) =(8.314´3000¸101325) = 0.2462.

m(H2) = 2´10-3/6.023´1023= 3.320´10-27 кг.

m(H) = 1´10-3/6.023´1023= 1.660´10-27 кг.

Приведённая масса молекулы (для вычисления момента инерции)

(H2) = m(H) ´m(H) / [m(H) + m(H)] = m(H) /2= m(H2) /4=0.83´10-27 кг.

Момент инерции молекулы

I(H2) = 0.83´10-27 кг´(0.7416´10-10) 2 м2 =4.565´10-48 кг´м2.

Энергия диссоциации равна DEe(H2 ® 2H) = D0(H2) = 431980.2 /6.023´1023 Дж = =7.1722´10-19 Дж (см. таблицу 1).

Показатель степени электронного фактора Больцмана

D0(H2) / kT = 7.1722´10-19 Дж/4.14´10-20 Дж =17.324

Электронный фактор Больцмана (статистическая сумма молекулы)

exp [D0(H2) / kT] = exp(17.324) = 3.3397780´107= 1/2.99421´10-8.

Квант колебательного возбуждения

h= hc= 6.62´10-34´3´1010´4395.24=8.72895´10-20 Дж.

Показатель колебательного фактора Больцмана

h/ kT=8.72895´10-20 Дж/4.14´10-20 Дж =2.10844.

Колебательный фактор Больцмана

exp(-h/ kT) =exp(-2.10844) = 0.1214.


Страница: