Химический анализ силикатов и керамики
В работах отвергают возможность образования γ - Аl2 O3, т.к. кристаллизация γ - Аl2 O3 происходит в значительном интервале температур, и столь большой тепловой эффект не может быть вызван образованием метастабильной фазы при температурах, близких к верхней температуре её устойчивости. Согласно точке зрения, экзотермичность вызывается перестройкой катионов алюминия из четвёртой координации в шестерную и является проявлением избыточной свободной энергии неустойчивой структуры метакаолини-та. Первый экзотермический эффект связывается также с образованием муллита или силлиманита по схемам:
3 Аl2 O3( аморфн.) + 6 SiO2 → 3 Аl2 O3 Аl2 O3 · 2 SiO2 + 4 SiO2 ;
2 Аl2 O3 · 2 SiO2 → Аl2 O3 · SiO2 + SiO2 ;
3 ( Аl2 O3 · 2 SiO2) →3 Аl2 O3 · 2 SiO2 + 4 SiO2 .
Однако образование муллита и силлиманита маловероятно, т.к. длительные диффузионные процессы типа кристаллизации и минералообразования не могут вызывать быстрого тепловыделения. Теплота образования муллита из метакаолинита в 30 раз и более превышает теплоту экзотермического эффекта. Теплота образо-вания силлиманита в 7 раз превышает теплоту этого эффекта. Вслед за первым экзотермическим эффектом на термограмме каолинита наблюдается второй при 1150 - 1300˚С и третий при 1210 - 1320˚С эффекты. Второй экзотермический эффект большинство исследователей связывают с образованием муллита. В каолините, нагретом до 1050˚С, обнаруживается кристобалит. Более чётко он обнаруживается в каолините, обожжённом при 1200 - 1400˚С. Третий экзотермический эффект обусловлен завершением кристаллизации муллита и кристобалита. Высказано предположение о том, что третий экзотермический эффект обусловлен кристаллизацией кристобалита из аморфного кремнезёма – продукта распада каолинита.
Гидрослюды. Потеря гидроокисла в гидрослюдах начинается примерно при 400˚С и может продолжаться до 900˚С и выше. Согласно исследованиям, структура диоктаэдрического иллита не разрушается по крайн-ей мере до 850˚С. Изученные иллиты характеризовались мусковитовым типом кристаллизации. Сообщает-ся о сохранении иллитоподобной структуры выше температуры потери гидроксильной воды. В одом из образцов структура сохранялась до 1000˚С. Структура иллитов разрушается выше 700˚С. При нагреве выше 850˚С появляется новая фаза – шпинель. При 1200˚С шпинель изчезает и появляются отражения муллита. По данным, при нагревании мусковита до 1000˚С развиваются гамма- глинозём и шпинель. При 1200˚С присутствует γ - Аl2 O3 и появляется α - Аl2 O3. Выше 1400˚С существуют только α - Аl2 O3 и стекло. При нагревании флогопита при 1000˚С развивается шпинель, которая сохраняется как единственная кристаллическая фаза до 1550˚С. При нагревании биотита до 1100˚С образуются богатая железом магнезиальная шпинель, лейцит и муллит. По данным, в биотите после нагревания до 1200˚С образуются лейцит, γ - Fе2O3 и шпинель. В этой же работе указывается, что октаэдрический слой решётки иллита, несущий глинозём, магний и железо, участвует в образовании шпинели, а щёлочи и кремнезём тетраэдрических слоёв дают аморфное стекло.
Монтмориллонитовые минералы. Впервые специальные термические исследования монтмориллонита были проведены Ле Шателье. Им установлены три термических эффекта при 150, 770 и 950˚С. Подтверждено, что на кривой нагревания монтмориллонитов имеются три остановки при температурах 50-137, 613-649, 832-970˚С. Первая эндормеческая остановка объясняется выделением адсорбционной воды, вторая соответствует освобождению конституционной воды, третья – разрушению решётки и аморфизации монтмориллонита. При температурах выше второй эндотермической остановки происходит постепенная кристаллизация новообразований. При термическом исследовании бентонитовых глин Азербайджана также установлено наличие трёх эндотермических остановок на кривых нагревания. Экспериментально показано, что в интервале температур 100-200˚С монтмориллониты теряют межслоевую воду, в результате чего возникает «сжатая» структура. При дальнейшем нагревании минерал начинает терять конституционную воду. Температура, при которой это происходит, зависит от характера минерала и равна 400-500˚С для нонт-ронитов , 500-700˚С для монтмориллонитов – бейделлитов и 700-900˚С для гекторита. Структура безводных монтмориллонитов сохраняется до температур 800-900˚С. При нагревании монтмориллонитов выше 900˚С образуются разнообразные кристаллические фазы, которые могут существовать по крайней мере до 1300˚С. Развивающиеся высокотемпературные фазы различны для различных монтмориллонитов, что объясняется колебанием химического состава и характера структур в пределах этой группы. Согласно данным, при обжиге монтмориллонитов, богатых железом и содержащих в качестве обменного катиона калия, высокотемпературные кристаллические фазы развиваются слабо. На основании изучения состава высокотемпературных фаз выделяют два типа диоктаэдрических монтмориллонитов. Для первого характерно образование в области высоких температур фазы кварца, который затем при температуре 1000˚С пе6реходит в кристобалит. Для второго типично появление в области температур 1150-1250˚С фазы муллита. В зависимости от индивидуальных особенностей образцов минералов монтмориллонитовой группы при их обжиге могут кристаллизоваться кордиерит, энстатит, периклаз и возможно анортит.При изучении высокотемпературных превращений бинтонитовых глин Российской Федерации показано, что при обжигн большинства их образуется шпинель Mg Аl2 O4. В некоторых образцах бентонитов, нагретых до температуры 1050˚С, выделяется кристобалит. При нагревании до 1200˚С образование кристобалита отмечается у большинства бентонитов. На образование высокотемпературных фаз при обжиге бентонитов существенное влияние оказывает обменный комплекс. Экспериментально показано, что самый богатый набор высокотемпературных фаз дают монтмориллониты Mg- формы. Однако ещё большее значение при этом имеют особенности кристаллической структуры монтмориллонитов. Например, образцы гумбрина независимо от состава обменного комплекса не дали муллита. Типичные для него фазы кварца и кристобалита появляются независимо от катионной формы. Это согласуется с данными о монтмориллоните первого типа. Ко второму типу ближе аскангель. Согласно, этому типу глин не присуще образование фазы кварца. Действительно, во всех изученных катионных формах аксангеля эта фаза отсутствовала. Характерно, что только в аксангеле нет кордиерита, что также типично для указанного типа.Реакции и процессы, протекающие в глинах при нагревании и приводящие к образованию высокотемпературных фаз, зависит прежде всего от микроструктуры частиц. Характер взаимной упорядоченности алюмосиликатных слоёв и наличие в их структуре определённых дефектов, возникающих ещё до начала образования высокотемпературных фаз (700-800˚С), предопределяют течение реакции в твёрдой фазе и образование того или иного высокотемпературного силиката.