Формально–кинетический анализ гипотез
Рефераты >> Химия >> Формально–кинетический анализ гипотез

ν1 – 2ν2 = 0, (14)

которое имеет одно линейно-независимое решение. Задав ν1 = 1, получим ν2 = 0.5. При ν1 = 2 ν2 = 1 и т.д. Если при сложении стадий (1) и (2) (для исключения Х из итогового уравнения) умножим стадии (1) и (2) на наборы |1 0.5| или |2 1|, получим итоговые уравнения, соответственно, маршрутов N(1) и N(2):

N(1) А = 1/2 Р

N(2) 2А = Р

Очевидно, что ΔG(Р) (по маршруту N(Р)) определяется уравнением (15)

(15)

В соответствии с уравнением (7) для ΔG(Р) и для ΔGj получаем:

(16)

где –скорости элементарной стадии в прямом и обратном направлениях.

Для маршрута N(1):

(17)

Для маршрута N(2):

(18)

Примем стадию (1) механизма (13) в качестве лимитирующей, а стадию (2) – квазиравновесной (). Тогда при равновесии брутто-процесса () получим из уравнения (17) константу равновесия итогового уравнения для маршрута N(1)

,

а из уравнения (18) – константу равновесия маршрута N(2)

.

Такие уравнения для К(1) и К(2) получим и в случае лимитирующей второй стадии.

Если кинетические уравнения получены экспериментально, итоговые уравнения выбираются уже не произвольно. Так, например, для механизма (13), если R+ µ [A] (стадия (1) лимитирующая), итоговое уравнение, которое получится при равновесии, будет уравнением N(1). Если R+ µ [A]2, итоговое уравнение N(2). Поэтому для определения скорости R- по известной R+ (и наоборот) следует использовать соответствующие кинетике итоговые уравнения. Таким образом, кинетика реакции в случае нелинейного механизма может ограничивать выбор маршрута.

Для обратимых стационарных и квазистационарных процессов с линейными механизмами нет ограничений при выборе базиса маршрутов и итоговых уравнений Однако итоговое уравнение, как мы видели в случае 2А = 2В, не должно противоречить кинетическому уравнению, следующему из механизма реакции. Для механизмов с необратимыми стадиями формально также можно использовать любые наборы , включая и отрицательные νj для необратимых стадий. Вместе с тем, в согласии с физическим смыслом целесообразно выбирать такие базисы маршрутов, чтобы и маршрут и скорость по маршруту относились к термодинамически и кинетически разрешенному направлению реакции (направление необратимых стадий).

Для нелинейных одномаршрутных механизмов, имеющих лимитирующую стадию, можно получить выражения для скорости лимитирующей стадии в прямом и обратном направлениях, но в этом случае выбор итогового уравнения будет определяться природой лимитирующей стадии.

Получив матрицу Г, найдём итоговое уравнение, т.е. матрицу стехиометрических коэффициентов итоговых уравнений ВР,

или

и уравнения, связывающие скорости по веществу RN и скорости по маршруту RP

.

Поскольку , получим или . Домножив обе части полученного матричного уравнения слева на ВN, получим уравнение (19)

ГRP = Wj, (19)

называемое условием стационарности стадий Хориути - Тёмкина. Это уравнение устанавливает связь между скоростью стадии и скоростью по маршруту и показывает, как стадии механизма перераспределяются по маршрутам. Кроме того, уравнение (19) можно использовать и для вывода уравнений для скоростей Ri и RP (аналогично методу Боденштейна), поскольку система (19) содержит S уравнений и S неизвестных (S = NI + P). Условие стационарности стадий (19) эквивалентно условию Боденштейна

. (20)

Из (20) и (19) получаем уравнение (9), используемое для нахождения базиса маршрутов

.

Пример 3. Механизм гидрирования этилена (21) на поверхности твердого металлического катализатора опишем последовательностью четырех элементарных стадий:

(21)

NI = rankBX = 2 (есть один закон сохранения, ). Следовательно, P = S – NI = 2. Найдем матрицу Г. Для этого запишем систему уравнений . Возьмем два независимых столбца (Z, ZH2) (см. уравнения (10 – (12))

Задавая n3 и n4, получим два вектора nj для двух маршрутов, т.е. матрицу Г:

Зная Г, найдем BP и итоговые уравнения маршрутов BP = ГTBN.

Итоговые уравнения для обоих маршрутов одинаковы

I) H2 + C2H4 = C2H6

II) H2 + C2H4 = C2H6

В этом случае

Поскольку стадия механизма (4) обратима, можно взять другую комбинацию маршрутов:

Получим другую матрицу BP:


Страница: