Физико-химические основы адсорбционной очистки воды от органических веществ
Большой интерес представляет расчет изотермы адсорбции без экспериментальных измерений. В основу такого расчета положены следующие представления:
– адсорбция органических веществ (неэлектролитов и слабых электролитов) на углеродных адсорбентах, являющаяся физическим нелокализованным процессом, обусловлена дисперсионным взаимодействием молекул органических веществ с углеродными атомами поверхности, и поэтому поверхностные оксиды не влияют на адсорбционное равновесие и избирательность адсорбции;
– общий объем всех адсорбированных компонентов раствора является величиной постоянной, не зависящей от структуры молекул, соотношения концентраций и их ориентации. Молярные объемы адсорбированных веществ приблизительно равны молярным объемам жидкостей;
– равновесной концентрации в объемном растворе, равной растворимости, соответствует предельное значение коэффициента активности в уравнении парциальной изотермы адсорбции, величина которого пропорциональна произведению константы адсорбционного равновесия на растворимость;
– при адсорбции из водного раствора сильнополярных молекул (с большим дипольным моментом) в адсорбционной фазе проявляется диполь – дипольное отталкивание вследствие навязанной полем адсорбента однообразной ориентации диполей на границе раздела фаз, что приводит к уменьшению предельной плотности вещества в адсорбционной фазе. [6]
5.1 Аддитивность величин стандартного уменьшения свободной энергии адсорбции
Для количественной термодинамической характеристики адсорбируемости применяют величину стандартного уменьшения свободной энергии адсорбции . Поскольку дисперсионные силы, обусловливающие физическую адсорбцию, аддитивны, А.В. Киселев свел расчет уменьшения свободной энергии адсорбции молекул к вычислению инкрементов стандартного уменьшения свободной энергии адсорбции, обусловленных отдельными структурными элементами молекул адсорбата.
При изучении адсорбции из растворов также можно было ожидать аддитивности энергий адсорбции, так как энергия сольватации (гидратации) аддитивно складывается из энергий сольватации отдельных элементов структуры молекулы.
Аддитивность изменения химических потенциалов при адсорбции из раствора была теоретически проанализирована в работе Осьцика и Ваксмундского. Рассматривая изменение химического потенциала в результате адсорбции многоатомных молекул из раствора, ли приняли в качестве исходной позиции, что общее изменение представляет собой сумму инкрементов, характеризующих изменение химического потенциала в результате адсорбции отдельных элементов структуры молекул таких, как группы –СН3 и =СН2, составляющие углеродный скелет органических молекул, или функциональные группы СООН, NO2 и т.п.
Теоретическое вычисление уме6ньшения свободно энергии при адсорбции из растворов до сих пор практически невозможно, особенно для случая адсорбции веществ, растворенных в воде. Поэтому при адсорбции растворенных веществ термодинамические величины, характеризующие адсорбционное равновесие, определяют экспериментально.
Таким образом, поскольку физическая адсорбция органических неэлектролитов и слабых электролитов неуглеродных материалах осуществляется, в основном, в результате дисперсионного взаимодействия, величина стандартного уменьшения свободной энергии адсорбции хорошо аппроксимируется суммой инкрементов, обусловленных вкладом отдельных структурных элементов и функциональных групп в это взаимодействие.
Стандартное мольное уменьшение свободно энергии адсорбции вещества может быть представлено в виде суммы инкрементов:
(11)
т.е. величина стандартного уменьшения свободной энергии адсорбции отражает влияние химического строения молекулы на энергию адсорбционного взаимодействия и, следовательно, на константу адсорбционного взаимодействия. [2]
5.2. Парциальная константа адсорбционного равновесия при адсорбции из водных растворов на пористых углеродных сорбентах
Парциальную константу адсорбционного равновесия можно представить следующим уравнением:
(12)
где и – молярные доли растворенного вещества в адсорбционной фазе и равновесном состоянии; – удельная адсорбция растворенного вещества; – предельно-адсорбционный объем пор адсорбента; – молярный объем; – парциальный коэффициент активности компонента;
Это – уравнение парциальной изотермы адсорбции, поскольку оно связывает равновесные величины адсорбции данного компонента с его равновесной концентрацией. Необходимые для расчетов величины молярных объемов компонентов раствора могут быть вычислены из их плотности в жидком состоянии:
(13)
где – плотность жидкого компонента; – его молекулярная масса.
Эти же величины можно найти как произведение ван-дер-ваальсовской площади проекции адсорбированной молекулы на ван-дер-ваальсовский размер ее, нормальный к плотности проекции , т.е. на так называемую толщину молекулы.
В уравнение парциальной изотермы адсорбции удобно вести величину относительного заполнения объема адсорбционной фазы органическим компонентом . Поскольку , а уравнение (13) можно записать в следующем виде:
(14)
При вычислении константы адсорбционного равновесия в качестве стандартного выбрано состояние бесконечного разбавления в растворе в адсорбционной фазе, когда заполнение адсорбционной фазы стремится к нулю.
Поскольку коэффициент активности в уравнении (14) становится равным единице для стандартного состояния, т.е. при бесконечно малой величине , для нахождения числового значения константы адсорбционного равновесия экспериментальные данные, изображенные в координатах , должны быть экстраполированы до значения . На рис. 5 показано графическое выделение логарифма парциально константы адсорбционного равновесия хлороформа, фенола, анилина, n-хлоранилина, n-нитрофенола, нитробензола и n-нитроанилина из водных растворов на угле КАД (по уравнениям (13) и (14)).