Физико-химические методы определения фенола
Где: а0 и аτ – содержание фенола (мг) в 100 мл исходной воды и после адсорбции (находят их по калибровочному графику).
5. Представить графически зависимость (С0-Сτ) от τ.
7.4 Методика выполнения измерений массовой концентрации фенола в питьевой и сточной воде, воде поверхностных и подземных источников водопользования методом высокоэффективной жидкостной хроматографии.
1. Объекты исследования
Настоящая методика устанавливает метод измерений массовой концентрации фенола в воде централизованных систем питьевого водоснабжения и расфасованной в емкости, воде минеральной питьевой лечебной, лечебно-столовой и природной столовой, природной и сточной методом высокоэффективной жидкостной хроматографии.
2. Диапазон измерений
Метод обеспечивает получение результатов измерений массовой концентрации фенола в пробах воды в диапазоне от 0,10 до 20 мкг/дм3.
3. Пробоподготовка
Отбор, консервация и хранение проб воды проводятся в соответствии с ГОСТ Р 51592, воды питьевой – по ГОСТ Р 51593, воды минеральной питьевой лечебной, лечебно-столовой и природной столовой – по ГОСТ 23268.0, воды природной – по ГОСТ 17.1.5.05, поверхностных вод суши и очищенных сточных вод – по Р 52.24.353, сточных вод – по НВН 33.5.3.01, а также в соответствии с другой нормативной документацией, регламентирующей отбор проб для конкретных объектов исследования.
Для отбора, хранения и транспортировки проб используют чистые склянки темного стекла с герметично закрывающимися крышками. Объём пробы воды для определения массовой концентрации фенола должен быть не менее 1000 см3. Пробы хранят при температуре 4–6 °C не более 3 суток.
Подготовка проб к измерениям включает следующие этапы:
1) Извлечение (экстракция) фенола из пробы методом твердофазной экстракции;
2) Элюирование фенола с ТФЭ-картриджа;
3) Подготовка пробы для ввода в хроматограф.
Для анализа готовят две параллельные пробы.
Блок-схема процедуры пробоподготовки:
4. Проведение хроматографического анализа.
4.1. Оборудование и условия для проведения ВЭЖХ-анализа градуировочных растворов фенола, подготовленной пробы воды.
Для хроматографического анализа фенола необходимо использовать изократическую хроматографическую систему с электрохимическим детектором.
При подготовке к выполнению измерений выполняют следующие работы: подготовка посуды, проверка чистоты реактивов и растворителей, приготовление растворов, подготовка хроматографа к работе, контроль эффективности разделительной системы, установление градуировочной зависимости.
Оборудование:
хроматографическая система «Стайер» (Аквилон);
детектор электрохимический (ECD);
персональный компьютер, с соответствующим установленным программным обеспечением – «МультиХром для Windows XP» версии 1.5 или 2х
Условия:
– режим разделения: изократический;
– колонка: Synergy Polar-RP 250x4,6 мм 4 мкм;
– защитная колонка: Polar-RP 4x3,0 мм
– подвижная фаза: ацетонитрил – 1% p-p фосфорной кислоты в воде (35:65);
– скорость потока: 0,9 см3/мин;
– температура: 20 °С
– объем петлевого дозатора: 100 мкл;
– детектирование: электрохимическое;
– режим: постояннотоковый;
– потенциал рабочего электрода: +1,3 В.
Эффективность установленной разделительной системы оценивают по значению показателя эффективности N (числа теоретических тарелок) пика фенола при вводе в хроматограф градуировочного раствора с массовой концентрацией фенола 100 нг/см3. Значение показателя эффективности рассчитывают как среднее арифметическое значение по результатам двух параллельных измерений. Эффективность установленной разделительной системы принимают удовлетворительной при N ≥ 10000. Контроль эффективности установленной разделительной системы в процессе эксплуатации проводится не реже чем 1 раз в 2 недели.
Градуировку во всем диапазоне измеряемых концентраций проводят не реже 1 раза в месяц, а также при смене колонки и / или защитной колонки, при замене стандартных веществ и / или реактивов; после проведения ремонта хроматографа, после длительного простоя хроматографа (2 недели и более), при изменении эффективности хроматографической системы и / или чувствительности детектора.
Контроль стабильности градуировочной характеристики выполняют перед началом работ в день выполнения измерений по градуировочному с массовой концентрацией фенола 100 нг/см3. Регистрируют не менее двух хроматограмм. При отклонении среднего значения результатов измерений фенола в градуировочном растворе более чем на 15% и / или изменении времени удерживания более чем на 7%, выполняют градуировку хроматографа во всем диапазоне измерений.
4.2. Определение количественного содержания фенола в пробе воды.
Для получения результата измерений необходимо провести анализ двух параллельных проб, для каждой из которых выполнить по два измерения (получить по две хроматограммы).
Результат измерений – массовая концентрация фенола в пробе, введенной в хроматограф, автоматически рассчитывается программой системой сбора и обработки хроматографической информации «МультиХром». Расчитывают среднее арифметическое значение (Сxp) массовой концентрации фенола в пробах, введенных в хроматограф (C1 и C2), по результатам двух измерений для каждой из параллельных проб.
Заключение
Физико-химические методы анализа (ФХМА) основаны на использовании зависимости физических свойств веществ (например, светопоглощения, электрической проводимости и т.д.) от их химического состава. Иногда в литературе от ФХМА отделяют физические методы анализа, подчёркивая тем самым, что в ФХМА используется химическая реакция, а в физических – нет. Физические методы анализа и ФХМА, главным образом в западной литературе, называют инструментальными, так как они обычно требуют применения приборов, измерительных инструментов. Инструментальные методы анализа в основном имеют свою собственную теорию, отличную от теории методов химического (классического) анализа (титриметрии и гравиметрии). Базисом этой теории является взаимодействие вещества с потоком энергии.
При использовании ФХМА для получения информации о химическом составе вещества исследуемый образец подвергают воздействию какого-либо вида энергии. В зависимости от вида энергии в веществе происходит изменение энергетического состояния составляющих его частиц (молекул, ионов, атомов), выражающееся в изменении того или иного свойства (например окраски, магнитных свойств и т.п.). Регистрируя изменение этого свойства как аналитический сигнал, получают информацию о качественном и количественном составе исследуемого объекта или о его структуре.
Наибольшее практическое применение имеют оптические, хроматографические и потенциометрические методы анализа.
По сравнению с классическими химическими методами ФХМА отличаются меньшим пределом обнаружения, временем и трудоёмкостью. ФХМА позволяют проводить анализ на расстоянии, автоматизировать процесс анализа и выполнять его без разрушения образца (недеструктивный анализ).