Физико-химические методы исследования бетонных образцов
1. Очистка. Для очистки используется специальное концентрированное средство ASOR008 Bioversal. Степень разведения зависит от характера и интенсивности загрязнения и находится в пределах от 1 : 5 до 1 : 10. Средство наносится распылением, и после обработки щеткой поверхность основательно промывается водой.
2. Грунтование. Для грунтования очищенных, промытых, слегка влажных бетонных поверхностей перед последующей защитой следует применить уникальную грунтовку ASODUR-SG2. Это плотная водостойкая и маслостойкая двухкомпонентная эпоксидная смола в отличие от всех остальных эпоксидных композиций обладает очень высокой адгезией к влажному бетонному основанию (3,6 – 3,8 МПа). Плотность и уровень адгезионной прочности ASODUR-SG2, высокое противостояние отрыву удерживают оставшиеся в глубинных слоях бетона остатки масел, не позволяя им выйти на поверхность. Грунтовка незаменима и в условиях внешнего воздействия грунтовых вод.
3. Защита. Устойчивостью к маслам и нефтепродуктам обладают эпоксидные композиции. Для применения в качестве накатываемых покрытий на бетонные поверхности, может. быть рекомендована, в частности:
ASODUR-TE – двухкомпонентная тиксотропная эпоксидная смола. В отвержденном состоянии высокоэластична, износостойка и работоспособна в интервале температур от –30оС до +80оС.
Для наливного пола в условиях механических нагрузок (проходы людей, транспорт, станки и пр.) в качестве наливного покрытия применяется прочная, износостойкая эпоксидная композиция ASODUR-B351 – промышленный пол.
6.2 Защита очистных сооружений в условиях газовой коррозии
Железобетонные конструкции гидро- и очистных сооружений подвергаются различным видам коррозии. К ним относятся, в частности:
1. Биогенная коррозия, вызванная образованием и интенсивным размножением органических колоний;
2. Углекислотная коррозия, обусловленная синергетическим действием углекислого газа и воды с превращением кальцита в растворимый гидрокарбонат кальция;
3. Сульфатная коррозия, происходящая под действием серосодержащих газов (сероводорода, продукта гниения органического ила и сернистого газа, продукта окисления сероводорода);
4. Аммиачная коррозия, вызываемая продуктами разложения белковых соединений ила – (мочевина, аммиак).
В сооружениях для бытовых сточных вод дефектные места в бетоне проявляются значительно медленнее в силу более низких химических и термических нагрузок, поэтому они трудно устанавливаются. Однако, поверхности газовой зоны резервуаров для органического ила (метантенков) и канализационных труб весьма чувствительны к агрессивному воздействию. Выделяющийся из сточной воды газообразный сероводород проникает во влажный бетон и благодаря серным бактериям превращается в серу и серную кислоту. Это приводит к коррозии арматуры и достаточно быстрому разрушению бетона. Особенно уязвимы в этом отношении поверхности колпаков больших резервуаров с органическим илом.
Исходя из необходимости защиты, прежде всего, от коррозионного воздействия газов, следует отдать предпочтение газоплотным поверхностным коррозионностойким покрытиям с высокой степенью адгезии к бетону и металлу, эластичным и трещиностойким, особенно в условиях перепада температур при эксплуатации на открытом воздухе.
6.3 Универсальная химическая защита
Для защиты резервуаров, реакторов, ванн, поддонов, лотков, труб и пр., в том числе и нуждающимся в ремонте, перспективным является применение термопласт-облицовок - технология STEULER. В старое бетонное сооружение вносится вкладыш из термопласта (полиэтилен высокой плотности, полипропилен), оснащенный с наружной стороны вплавленными анкерами. Системный материал монтируется на месте производства работ путем сваривания листов в конструкцию необходимой конфигурации (сложные профили возможно изготавливать на заводе) и заполняется со стороны анкеров высокоподвижным безусадочным раствором. После твердения раствора образуется единая система - бетон-термопласт-облицовка. Старое сооружение играет, таким образом, роль несъемной опалубки и не требует соответственно длительного ремонта и защиты.
Применение бетон-термопласт-облицовок в новом строительстве и ремонте имеет неоспоримые преимущества, к которым относятся:
1. Универсальная химическая стойкость материала;
2. Водонепроницаемость
3. Антиадгезионная поверхность (не зарастает и легко очищается);
4. Сохранение физических свойств при длительном воздействии агрессивных компонентов;
5. Высокая долговечность – до 50 лет эксплуатации;
6. Физиологическая и экологическая безопасность;
7. Низкая трудоемкость при монтаже и ремонте (сварка);
8. Стойкость материала к низким температурам – до -50оС;
9. Ремонтопригодность
10. Не лимитируемые сроки хранения [1,2].
7. Термический анализ
Метод исследования физико-химических и химических превращений, происходящих в минералах и горных породах в условиях заданного изменения температуры. Термический анализ позволяет идентифицировать отдельные минералы и определять их количественное содержание в смеси, исследовать механизм и скорость протекающих в веществе изменений: фазовые переходы или химические реакции дегидратации, диссоциации, окисления, восстановления. С помощью термического анализа регистрируется наличие процесса, его тепловой (эндо- или экзотермичность) характер и температурный интервал, в котором он протекает. С помощью термического анализа решается широкий круг геологических, минералогических, технологических задач. Наиболее эффективно использование термического анализа для изучения минералов, испытывающих фазовые превращения при нагревании и содержащих H2O, CO2 и другие летучие компоненты либо участвующих в окислительно-восстановительных реакциях (оксиды, гидроксиды, сульфиды, карбонаты, галогениды, природные углеродистые вещества, метамиктные минералы и др.). Метод термического анализа объединяет ряд экспериментальных методов: метод температурных кривых нагревания или охлаждения (термический анализ в первоначальном понимании), производный термический анализ (ПТА), дифференциальный термический анализ (ДТА). Наиболее распространён и точен ДТА, при котором изменяется температура среды по заданной программе в контролируемой атмосфере и регистрируется разность температур между исследуемым минералом и веществом сравнения как функция времени (скорость нагревания) или температуры. Результаты измерения изображают кривой ДТА, откладывая по оси ординат разность температур, по оси абсцисс - время или температуру.
Метод ДТА часто объединяют с термогравиметрией, дифференциальной термогравиметрией, термодилатометрией, термохроматографией.
7.1 Термогравиметрия
Метод термического анализа, основанный на непрерывной регистрации изменения массы (взвешивании) образца в зависимости от его температуры в условиях программированного изменения температуры среды. Программы изменения температуры могут быть различны. Наиболее традиционным является нагревание образца с постоянной скоростью. Однако нередко используются методы, в которых температура поддерживается постоянной (изотермические) или меняется в зависимости от скорости разложения образца (например, метод постоянной скорости разложения).