Физико-химические методы исследования бетонных образцов
5.2 Гидрофобизирующие добавки
Молекулы поверхностно-активных веществ, имеющих многоатомные неполярные углеводородные цепочки, располагаются полярными группами внутрь по направлению к гидрофильным молекулам цемента, прочно адсорбируясь на них. Неполярная гидрофобизирующая часть молекулы добавки фиксируется на поверхности твердой фазы, обеспечивая водоооталкивающие свойства. Часто эффекты гидрофобизации и пластификации совпадают особенно в современных комплексных системах добавок, основу которых составляют, как правило, соли длинноцепных органических кислот, а также кремнийорганические соединения.
5.3 Добавки, регулирующие структуру и сроки схватывания-твердения
Ускорение или замедление сроков схватывания обусловлено причинами как физического, так и химического характера. Это может быть изменение растворимости вяжущих веществ: понижение растворимости ведет к замедлению твердения (добавки спиртов); повышение растворимости, вступление в химическую реакцию с компонентами вяжущего вызывает процессы ускорения схватывания-твердения. Появление новообразований – продуктов реакции материала с добавками – положительно влияет на ряд свойств: прочность, водонепроницаемость, морозостойкость бетона. К таким добавкам относятся широко известные системы на основе хлоридов и нитратов кальция, образующие с минералами портладцементного клинкера новые соединения – двойные соли-гидраты. Эти соединения оказывают существенное положительное влияние на такие свойства бетона, как прочность, водонепроницаемость, морозостойкость.
Расширяющиеся и напрягающие цементы содержат, как правило, безводный сульфоалюминат кальция, дающий при гидратации достаточно объемные образования, или активный кремнезем, образующий расширяющие и труднорастворимые гидросиликаты кальция. Все это в итоге ведет к увеличению прочностных и деформационных свойств.
К добавкам, изменяющим структуру бетона, относятся газо- и пенобразующие добавки: алюминиевая пудра, поверхностно-активные вещества и др. Производство пено- и газобетонов существенно снижает материалоемкость производства, улучшает эксплуатационные свойства материалов, прежде всего их объемную массу и теплофизические характеристики.
Современные супер- и гиперпластификаторы - это системы комплексного действия. Малые количества этих добавок способствуют значительному снижению водоцементного отношения, а, следовательно, повышению плотности, трещиностойкости, морозостойкости, химической устойчивости и ряда других свойств. Комбинация различных компонентов часто направлена на синергизм – взаимное усиление действия составляющих на достижение определенных свойств [1].
6. Поверхностная защита бетона
В условиях атмосферного воздействия (влага, перепады температур, УФ-излучение, наличие агрессивных газов СО2, SO2, NO2 и пр.) хорошо зарекомендовали себя вододисперсионные акриловые и кремнийорганические краски. Создавая тонкий, плотный барьер, эти краски надежно защищают бетон в атмосферных условиях.
Старение бетона под действием техногенных факторов принимает такие темпы, что становится отчетливой необходимостью специальная поверхностная защита материала.
Обязательных мероприятий по химической защите бетонных сооружений требуют следующие среды:
Среды |
Количественные показатели |
Неорганические кислоты: H2SO4, HCl, HNO3, H2F2, HClO4, H3PO4, H2CrO4 Органические кислоты: муравьиная, уксусная, молочная, масляная, хлоруксусная, салициловая, щавелевая Щелочи: NaOH, KOH, сода Na2CO3, фосфаты, очищающие и моющие средства Минеральные масла |
рН-фактор < 3,5 или расход основания для слабодиссоциирующих кислот > 10 ммоль/л рН-фактор < 3,5 или расход основания для слабодиссоциирующих кислот > 10 ммоль/л рН-фактор > 13 или концентрация > 10 М.% Кислотное число > 0,5 мг КОН / г |
Из других веществ могут быть агрессивными для бетона:
1. Растительные и животные жиры и масла
2. Растворы солей (сульфаты, хлориды, магнезиальные и аммонийные соли)
3. Сульфиды
4. Глицерин
5. Формальдегид
6. Фенолы, крезолы
7. Низкомолекулярные эфиры (бутилацетат)
8. Пластификаторы (дибутилфталат)
Действие этих веществ зависит от их концентрации, рН-фактора, продолжительности воздействия, поэтому выбор защиты определяется конкретными условиями.
В сооружениях из железобетона следует учитывать:
1. Возможность каталитического действия стали на реакции гидролиза в щелочной среде бетона (например, отщепление хлор-ионов от тетрахлорметана)
2. При действии солей, особенно хлоридов, агрессивное действие может быть направлено преимущественно на арматуру;
3. Достаточность толщины бетонного слоя над арматурой;
4. Водонепроницаемость бетона;
5. Снижение сцепления бетона с арматурой под действием некоторых сред, например – минеральных масел и жиров.
Поэтому при строительстве новых и восстановлении старых сооружений основными задачами являются эффективность и долговечность защиты, что возможно лишь при использовании современных системных технологий.
Системность в выполнении ремонтно-защитных работ подразумевает использование материалов одного производителя с такими требованиями как:
1. Хорошая совместимость компонентов системы,
2. Безусадочность ремонтных растворов,
3. Ранний набор прочности,
4. Трещиностойкость,
5. Атмосферостойкость,
6. Индивидуально подобранная химически стойкая защита.
При защите бетонной поверхности тонкослойными синтетическими покрытиями, используются преимущественно эпоксидные или полиуретановые смолы; в условиях жесткой агрессии – смолы на основе виниловых эфиров, фурановые полимеры и композиции на основе жидкого стекла.
Необходимыми требованиями к поверхности являются:
1. Прочная ровная основа, без изъянов и трещин.
2. Влажность, не превышающая 4%.
3. Изоляция от наружного подпора грунтовых вод.
При соблюдении этих условий, в выборе надежных материалов и строгом выполнении технологии защита может быть и эффективной и долговечной.
6.1 Очистка и защита замасленных поверхностей
Серьезной проблемой, в частности, является очистка, подготовка и защита замасленных, контактирующих с нефтепродуктами бетонных поверхностей.
Полы и резервуары нефтеперерабатывающих производств, очистные сооружения – все минеральные поверхности, контактирующие с сырой нефтью, маслами, соляркой, мазутом и пр., с трудом поддаются очистке, отмывке и последующей защите. Проблемой является и изоляция швов на замасленных поверхностях. Создаваемая антиадгезионная прослойка является серьезной помехой в проблемах реконструкции и противокоррозионной защиты.
Технология SCHOMBURG по обновлению и защите бетонных поверхностей, контактирующих с маслами и нефтепродуктами, включает три основных этапа: