Структура и адгезионные свойства отверждённых эпоксидных смол
Рефераты >> Химия >> Структура и адгезионные свойства отверждённых эпоксидных смол

Активирование поверхности волокон окислительной электро­химической обработкой приводит к существенному повышению прочности на границе раздела. Это, прежде всего, проявляется в том, что при сохранении геометрии соединения рез­ко возрастает число образцов, разрушаю­щихся по волокну. Поэтому требуется значительно уменьшить среднюю площадь; успешно определить значение tоудается лишь при Scp=(1,5-2)×10-3 мм2. Влияние обра­ботки поверхности на адгезионную прочность (S = 2×10-3 мм2) иллюстрируют следующие данные:

Прочность волокон, Мпа

t0 МПа

Исходное волокно

3000

71/52

Озонирование

2780

-/78

Электрохимическая обработка

2800

91/-

В числителе—для эпоксидианового связующего, в знаменателе—для эпоксиноволачного.

Окислительное модифицирование по­верхности волокон приводит к существенному росту адгезионной прочности. Так, для связующего ЭДТ-10 значения tовозрастают на 28 %. Увеличение адгезии как с изменением структуры поверхности волокон, так и с ее химической мо­дификацией. Окисление ведёт к росту шероховатости по­верхности, возникновению дополнительных пор и пустот, а следовательно, — к росту удельной поверхности волокон. В то же время при окислении на поверхности могут возникать полярные кислородсодержащие группы (карбонильные и карбоксильные), значительно повышающие активность этой поверхности[7].

Окислительная обработка приводит к некоторому увеличению удельной поверхности, однако она продолжает оставаться невы­сокой, что свидетельствует о малой пористости и дефектности по­верхности данных углеродных волокон. Это подтверждает и тот факт, что прочность элементарных волокон после обработки меняется незначительно.

При высокотемпературной обработке волокон с модифициро­ванной поверхностью выделяется в два раза больше газов (СО+С02), чем при той же обработке исходных волокон, т. е. химическая активность поверхности после окис­лительной обработки растет. С увеличением активности связан рост адгезионной прочности в системах углеродное волокно — связующее. Обработка поверхности углеродных волокон в газо­разрядной плазме к увеличению прочности сцепления с эпоксидными матрицами не приводит.

Адгезия полимерных матриц к высокопрочным органическим волокнам

Пластики на основе полимерных волокон (лавсан, капрон, нит­рон, фенилон, аримид и др.) находят широкое применение в самых различных областях народного хозяйства. Однако боль­шинство из этих волокон не обладает высокой прочностью и не используется для получения высокопрочных композитов кон­струкционного назначения.

Для получения органоволокнитов с высокими механическими показателями в последнее время используют жесткоцепные поли­амидные волокна типа ВНИИВЛОН. Адгезию к этим волокнам будет рассмотрена в этом разделе. Средний диаметр используемых волокон 13—13,5 мкм, сечение круглое, поверхность достаточно гладкая, отношение измеренной удель­ной поверхности к геометрической близко к 1: Sэксп/Sрассчит=1,33. Связующими служили эпоксидные полимеры.

При изготовлении соединений термореактивного полимерного связующего с полимерными органическими волокнами, как и при получении органоволокнитов, возможно проникновение полимера в субстрат. Для оценки такого проникновения часто определяют набухание волокон в связующем. Измерения показали, что в исследуемых нами случаях набухание волокон невелико. Так, рав­новесное набухание волокон в компонентах связующего ЭДТ-10, оцененное по изменению линейных размеров и массы волокон, при 90 и 120 °С не превышает 0,2—0,4 %.

Для систем, в которых возможна диффузия адгезива в волокно, следует особенно тщательно кон­тролировать характер разрушения. В данном случае контроль осуществляется с помощью электронного микроскопа (X2000). В большинстве случаев при адгезионном разрушении соединений с органическими волокнами, как и в слу­чае стеклянных волокон, в слое смолы под микроскопом видно ровное круглое отверстие. Однако в то время как конец стеклян­ного волокна, выдернутый из адгезионно - разрушившегося соеди­нения, чистый и гладкий (без следов смолы), конец органиче­ского волокна в большинстве случаев представляет собой «ме­телку», состоящую из отдельных тонких фибрилл (рис. 21). Следует отметить также, что при разрушении соединений с органи­ческими волокнами, кроме образцов с чисто адгезионным харак­тером разрушения, встречаются образцы, в которых после вы­дергивания волокна у нижнего края отверстия видны торчащие тонкие «усы» — вероятнее всего фибриллы расщепившегося во­локна. Такой тип разрушения условно может быть отнесен к адгезионному, хотя не исключено, что тут имеет место смешанный механизм. Когезионно разрушившимися считались образцы, в которых разрыв произошел по волокну или по смоле. Резуль­таты измерения адгезионной прочности приведены в табл. 4. Там же для сравнения приведены значения tодля соединений некоторых из исследованных полимеров со стеклянным волок­ном того же диаметра. Оказалось, что для всех исследованных связующих адгезия к полиамидным волокнам не ниже, чем к стеклянным, а для таких связующих, как ЭДТ-10 и 5-211, достигает (при S=6×10-3 мм2) 57,0 МПа. Это самые высокие значе­ния, полученные для соединений подобной геометрии[7].

Изменение прочности исследуемых во­локон мало сказывается на прочности их сцепления с эпоксидными матрицами. Так, для волокон с прочностью 3600 и 3000 МПа значения tов случае связующего ЭДТ-10 (при S=4,5×10-3 мм2) равны соответственно 67 и 69 МПа.

Таблица 4

Адгезионная прочность при взаимодействии термореактивных связующих с органическими волокнами

и стеклянными диаметром 13—13,5 мкм (S=6×10-3 мм2)

Адгезия полимерных матриц к борным волокнам

Пластики, армированные борными волокнами, характеризуются весьма высокой жесткостью и самой высокой по сравнению со всеми существующими композиционными материалами проч­ностью при сжатии. Это обусловлено большим диаметром и высоким модулем упругости волокон бора.

На рис. 18 представлены значения адгезионной прочности при взаимодействии эпоксидианового олигомера ЭД-20, отвержденного различными аминными отвердителями при комнатной и повышенных температурах, с борными и сталь­ными волокнами. Видно, что прочность сцепления эпоксидиановых связующих горячего и холодного отверждения с волокнами бора (d = 100—200 мкм) несколько выше, чем со стальными. Высокие значения адгезионной прочности связаны с топографией поверхности волокон бора. Эти волокна имеют плот­ную, сравнительно гладкую поверхность, имеющую форму кукурузного початка. Поэтому прочность сцепления с ними мо­жет определяться не только специфической, но и механической адгезией, и кроме того, истинная площадь контакта связующего с волокном может оказаться несколько больше видимой. Оба фактора могут приводить к увеличению измеряемого значе­ния t0.


Страница: