Сравнительный анализ методы получения синтез-газа
Конверсия смеси СН4 + СО2 на катализаторе Ni0,03Mg0,97O при 850 °С и давлении 0,1─0,2 МПа стабильно составляла 100%, а на катализаторе Ni0,03Ca0,10Mg0,87O ─ 45% [14]. При давлении 1,2 МПа наблюдается углеотложение, которое флуктуирует в ходе работы катализатора. Добавка СаО в этом случае значительно снижает углеобразование (от 330•10─3 г/г катализатора без СаO до 9,5•10─3 г/г катализатора с добавкой СаO).
Промотирование катализатора Ni0,03Mg0,97O благородными металлами (Pt, Pd и Rh) дает максимальный эффект при отношении М : M(Ni + Mg) = 0,021 [15]. На биметаллических катализаторах сильно снижается углеотложение. Кроме того, благородные металлы увеличивают стабильность катализатора при высоких температурах (850 °С).
В [25, 26] показано, что более концентрированные твердые растворы состава NiMgO (13─20% масс. Ni) после восстановления в условиях углекислотной конверсии метана значительно более активные и стабильные, чем системы NiO/Al2O3 и NiO/SiO2 в соответствующей концентрации. При этом лишь часть никеля входит в твердый раствор при реокислении. Вместе с тем смесь NiO + MgO, в отличие от катализатора NiO/MgO, полученного методом пропитки, менее устойчива к спеканию. Из-за взаимодействия никеля с MgO образование кристалликов Ni и, следовательно, отложение углерода уменьшено. Конверсия метана при 790 °С и объемной скорости газового потока 30000 см3/(г•ч) составляет 90%, селективность превращения в СО и Н2 равна 98%.
Различие между нанесенными катализаторами и каталитической системой, представляющей собой химическое соединение между компонентами, выявлено и в случае системы Ni + Al2O3. Катализатор Ni/Al2O3, приготовленный из аэрогеля, более активный и более коксоустойчивый, чем нанесенный катализатор, полученный пропиткой носителя солями Ni [27]. Установлено, что на катализаторе NiAl2O4, сформированном заранее, углеобразование меньше, чем на нанесенном катализаторе Ni/Al2O3, восстановление идет труднее, кристаллики Ni имеют меньшие размеры. Исследование с помощью трансмиссионного электронного микроскопа показало, что на поверхности катализатора образуются углеродные нити. Соли калия увеличивают стабильность катализатора при 650 °С, но при более высокой температуре термостабилизирующий эффект не наблюдается. Согласно [27], фасетированные или плоские частицы металла производят мало нитевидного углерода, а сферические частицы приводят к образованию закапсулированного углерода.
Катализатор 5%Ni/CaO • Al2O3, полученный осаждением никеля на уже сформированный алюминат CaAl2O4, имеет большую активность и менее подвержен отложению углерода, чем катализатор, полученный
смешением солей Ni, Ca и Al. Наблюдаемые различия приписаны разным количествам образовавшегося NiO на каталитической поверхности.
Показано [24], что активный, стабильный и селективный катализатор углекислотной конверсии метана можно получить при нанесении Ni на оксид α-Al2O3, модифицированный путем пропитки раствором Al(NO3)3.
Активность этого катализатора при 650─750 °С в смешанном и углекислотном риформинге ниже, чем в кислородном риформинге. Изучение влияния на активность катализатора Ni/Al2O3 различных солей Ni, используемых для его приготовления, показало, что в случае применения органических солей никеля (ацетилацетонат Ni и др.) формируется плотный углерод, который далее служит ядром для коксообразования. Это явление не возникает, если для приготовления катализатора используются неорганические соли Ni (нитраты, хлориды и др.). В работе [22] предложен новый метод получения катализатора Ni/Al2O3, включающий стадии осаждения углерода на поверхности и последующее удаление его по реакции с CO2. После такой многократной обработки уменьшается удельная поверхность Ni, но активность его растет, снижается углеотложение.
Согласно исследованию [22], высокая пористость Ni-катализаторов, нанесенных на Al2O3, SiO2, MgO, способствует повышению каталитической активности.
В работе [20] была изучена углекислотная конверсия метана при 650 °С и соотношении СН4:СО2 = 1:3 на катализаторе Ni/CaO-SiO2. Катализаторы готовили пропиткой солями Ni носителя SiO2, модифицированного СаО. При этом возрастает дисперсность металла.
Образующиеся угольные нити не дезактивируют катализатор.
Имеются данные о том, что дисперсность металла есть строгая функция кислотности носителя по Льюису [23]. Возможно, льюисовские центры являются центрами кристаллизации частиц металла.
По сообщениям [20, 21] регенерация в Н2 (700 °С, 12 ч) сильно увеличивает активность Ni-катализатора и уменьшает активность Ni-Co-катализатора. Изменения активности приписаны коксообразованию и структурным изменениям. Авторы [20, 21] делают вывод о том, что вклад паровой конверсии СО на этих катализаторах менее важен.
Никелевые катализаторы с добавками переходных металлов.
Исследовано влияние добавок La2O3, CeO2, а также оксидов MgO и CaO к катализатору Ni/Al2O3 на его активность и другие свойства в конверсии смеси CH4 + CO2 при 650─850 °С. Катализаторы, промотированные MgO и CaO, более чувствительны к условиям пропитки, чем катализаторы, промотированные оксидами редкоземельных элементов. Высокую активность проявляют катализаторы Ni/CeO2 и Ni/CeO2─Al2O3 [23]. Наиболее активен катализатор, содержащий 5% CeO2. Добавка способствует увеличению восстанавливаемости и диспергируемости никеля. Благодаря оксиду CeO2 после диссоциативной адсорбции CO2 атом углерода реагирует с кислородом и меньше образуется кокса.
Изучен катализатор Ni/MgO (Ni : Mg = 1:1) с добавками Cr2O3 и La2O3 [23]. Установлено, что введение Cr2O3 или La2O3 обеспечивает значительное повышение устойчивости катализатора к коксообразованию. Промотирование этими добавками увеличивает степень окисления Ni, что снижает склонность метана к глубокому дегидрированию (до углерода).
В Институте химической физики РАН проведено изучение широкого набора Ni/MgO-катализаторов с различными добавками [23]. Высокую активность показали Ni/MgO-катализаторы с добавками оксидов CeO2, CuO, Cr2O3, MnO2, которые в условиях катализа могут подвергаться восстановлению и окислению. Из них катализатор Ni/MgO-Cr2O3 оказался наиболее активным; при составе 6%Ni-1%Cr2O3-MgO он обеспечивает конверсию, близкую к равновесной, уже при ~ 700 °С (рис. 14). Как следует из зависимостей, представленных на рис. 14, даже небольшие количества Ni и Cr2O3 взаимно промотируют друг друга.
Рис. 14. Зависимость конверсии метана на катализаторе NiO-Cr2O3/MgO от содержания Cr2O3 при фиксированном содержании NiO (3%) (а) и от содержания NiO при фиксированном содержании Cr2O3 (2%) (б)
Была изучена углекислотная конверсия СН4 на Ni-катализаторах, нанесенных на α-Al2O3, γ-Al2O3, α-Al2O3•SiO2, ZrO2, MgO и модифицированных переходными металлами (Co, Cu, Fe), а также щелочными промоторами (Na, K). [23] Каталитическая активность Ni/α-Al2O3 очень близка к таковой для Ni/γ-Al2O3, но последний быстрее закоксовывается из-за его кислотных свойств. Для Ni-катализаторов на этих носителях получен следующий ряд их устойчивости к коксообразованию: α-Al2O3 > γ-Al2O3 > SiO2 > α-Al2O3•SiO2 > ZrO2, MgO. По силе влияние переходных металлов на катализатор Ni/α-Al2O3 соответствует ряду: Ni-Co, Ni > Ni-Cu >> Ni-Fe, а щелочных добавок ─ ряду: Ni > Ni-Na > Ni-K. Добавки металлов уменьшают восстанавливаемость никеля, но увеличивают его дисперсность. После 12 ч работы при 700 °С Ni-катализатор полностью дезактивировался, в то время как активность Ni-Co-катализатора сильно увеличилась при полном отсутствии коксообразования.