Спектроскопия
Рефераты >> Химия >> Спектроскопия

Содержание

Введение

Атомно-абсорбционный спектральный анализ

Зависимость резонансного поглощения от атомной концентрации.

Аппаратура.

Калибровка прибора

Калибровочные графики

Спектральный прибор

Атомизаторы.

Беспламенный метод атомизации с использованием графитовой кюветы.

Подготовка проб к анализу.

Рентгеновская спектроскопия

Рентгеноэлектронная спектроскопия

Рентгеноэлектронный спектрометр

Основные области применения рентгеноэлектронных спектров

Элементный состав

Химический сдвиг

Структура молекул

Степень окисления

Поверхность твердого тела

Фотоэлектронная спектроскопия

Общая характеристика фотоэлектронных спектрометров

Источники излучения

Заключение

Литература

Введение

В настоящее время нет общепринятой классификации многочисленных физических методов изучения состава, строения и свойств молекул, твердых тел и поверхности. Все методы можно классифицировать, во-первых, по характеру взаимодействия излучения или потока частиц с веществом, во-вторых, по изучаемым параметрам вещества. Если рассматривать только методы, ориентированные на изучение строения вещества, можно говорить о методах исследования геометрического строения и методах исследования электронной структуры. К первой группе кроме рентгеновских дифракционных методов и газовой электронографии можно отнести методы колебательной спектроскопии и ядерного магнитного резонанса, а во второй группе наиболее информативны методы фотоэлектронной спектроскопии и рентгеновской флуоресцентной спектроскопии. Безусловно, такое деление методов на две группы не является строгим, так как структура электронных оболочек зависит от геометрии ядерного остова, а межатомные расстояния и углы между связями определяются электронами атомов, образующих химическое соединение. Поэтому при таком делении методов на две группы учитывается преимущественная информация, которую можно получить данным методом.

Атомно-абсорбционный спектральный анализ

Метод атомно-абсорбционного спектрального анализа отличается высокой абсолютной и относительной чувствительностью. Метод позволяет с большой точностью определять в растворах около восьмидесяти элементов в малых концентрациях, поэтому он широко применяется в биологии, медицине (для анализа органических жидкостей), в геологии, почвоведении (для определения микроэлементов в почвах) и других областях науки, а также в металлургии для исследований и контроля технологических процессов.

По точности и чувствительности этот метод превосходит многие другие; поэтому его применяют при аттестации эталонных сплавов и геологических пород (путем перевода в раствор).

Чувствительность определения большинства элементов в водных растворах с пламенной атомизацией лежит в интервале от 0,005 до л-10 мкг/мл (т. е. от 5*10-7 до 10-3—10-4%): при этом расходуется от 0,1 до нескольких миллилитров раствора. Ошибка воспроизводимости единичного измерения (коэффициент вариации) р≤0,5% при благоприятных условиях измерения. На каждое измерение интенсивности аналитической линии затрачивается, как правило, не более 30 с. Столь высокая воспроизводимость результатов анализа объясняется стабильностью пламенного атомизатора, а также и высокой точностью схем регистрации и измерения интенсивности аналитических линий в приборах, предназначенных для атомно-абсорбционного анализа.

Существенные ошибки, связанные с изменением общей композиции проб, возникают лишь при анализе растворов сложного переменного состава; такие ошибки, как и в пламенной фотометрии, связаны с влиянием состава пробы на процессы атомизации, включая и распыление раствора.

Сравнение с эмиссионно-пламенной фотометрией показывает, что большая часть элементов определяется методом атомной абсорбции с более высокой или равной чувствительностью. По имеющимся данным с меньшей чувствительностью определяются, главным образом, щелочные и щелочноземельные элементы, у которых длина волны резонансных линий более 300 нм.

До разработки беспламенных способов атомизации область применения атомных спектров поглощения ограничивалась анализом растворов. Приемы беспламенной атомизации позволяют непосредственно анализировать порошковые и твердые пробы малых размеров с абсолютной чувствительностью порядка 10-8—10-14 г в зависимости от элемента; по точности они уступают пламенным методам.

Зависимость резонансного поглощения от атомной концентрации.

Поглощение света веществом выражается законом Бугера — Ламберта — Бера:

I=I0e-асl,

где I0- интенсивность падающего излучения; I – интенсивность излучения, прошедшего вещество; а – показатель поглощения света, рассчитанный на единицу концентрации поглощающего компонента и на единицу толщины слоя; с – концентрация поглощающего компонента; l – толщина поглощающего слоя. В аналитической химии пользуются следующими спектро-фотометрическими величинами: пропусканием Т(I/I0) и поглощением 1 — Т, выражаемыми в процентах, а также оптической плотностью D — безразмерной величиной, изменяющейся от нуля до бесконечно больших значений (практически до 2 — 3). Указанные величины связаны таким соотношением:

D=-lg T=бcl.

Для случая поглощения монохроматической линии:

α≈(πe2f)/(mc),

где е, т, с — физические постоянные; f— осцилляторная сила, т. е. среднее число электронов, приходящихся на атом, которые могут быть возбуждены излучением.

Для пламени ввиду неполноты диссоциации на атомы окислов и гидроокисей большинства элементов, а также вследствие неполного испарения растворенного вещества теоретический расчет концентрации элемента по его оптической плотности не является возможным; но, в случае испарения образца в графитовой кювете и при повышенном давлении, теоретический расчет концентрации можно произвести, пользуясь следующим соотношением:

D=1.5*1011*(Δνλ/( Δνλ+4Δν2c))*(f/A)*(M/S),

где D— оптическая плотность атомного пара; Δνλ, ΔνС —полуширина и сдвиг линии поглощения, см-1; f —осцилляторная сила; А —атомный вес; S— площадь сечения кюветы; М — количество элемента.

Применение этого соотношения в аналитической практике затруднительно ввиду необходимости знать точные значения входящих в нею атомных постоянных. Но оно ценно в том отношении, что показывает возможность при использовании испарения в графитовой кювете при повышенном давлении полного устранения влияния состава пробы на результаты анализа, а также возможность применить в этом случае градуировочные графики, построенные по одной, любой по составу, стандартной пробе.

Аппаратура.

Для анализа по атомным спектрам поглощения созданы специализированные приборы — атомно-абсорбционные спектрофотометры разных типов. Лучшие из них измеряют усредненную интенсивность аналитической линии, при помощи схем, которые позволяют практически исключить помехи от эмиссионного спектра пламени и заметно снизить ошибки, связанные с нестабильностями источника света и других узлов прибора.


Страница: