Создание эпоксидных композиций пониженной горючести с электропроводящими и диэлектрическими свойствами
Изучение кинетики отверждения показало, что для исходного олигомера формирование разветвленных макромолекул при отверждении протекает в течение 60 мин. С ростом завершенности реакции отмечен резкий подъем температуры до 1210С.
Введение в эпоксидный олигомер ФД снижает максимальную температуру отверждения (Тmax) с 121 до 64 ºС, что связано с активацией в процессе отверждения углеродного атома эпоксидного цикла к нуклеофильной атаке амином гидроксильными группами, находящихся в составе ФД.
Вместе с тем на стадии гелеобразования соединение разветвленных молекул в непрерывную сетку при введении в олигомер ФД, протекает с большей скоростью, чем у исходного олигомера, что подтверждается уменьшением времени гелеобразования, табл. 1.
Введение в эпоксидный олигомер ТХЭФ несущественно (с 121 до 110 ºС) снижает максимальную температуру и практически не влияет на время гелеобразования и время отверждения, табл. 2.
В эпоксидном олигомере модифицированном ФОМом повышается температура отверждения до 142ºC, а при этом время гелеобразования сокращается до 20 минут. Аналогичное влияние ФОМа проявляется в эпоксидной композиции содержащей ФД.
Максимально возможная степень отверждения достигается для составов содержащих ФОМ при использовании отвердителей, способных к формированию пространственно сшитых структур без подвода тепла, например, ПЭПА. Для составов, содержащих ФД и ТХЭФ анологичные значения степени отверждения достигаются только при термообработке, табл.2.
При дополнительном нагреве отвержденных составов преодолеваются диффузионные затруднения, возникающие в твердой матрице, и реагируют оставшиеся свободные реакционные группы отвердителя и олигомера, что приводит к возрастанию степени отверждения до 90-92%, табл. 3, кроме того, обеспечивается снижение внутренних напряжений в материале и улучшению ряда эксплуатационных свойств композиций.
Таблица 2.
Кинетика отверждения пластифицированных эпоксидных композиций
Состав материала, масс. ч., на 100 масс. ч. ЭД-20 |
Время гелеобразования, tгел, мин. |
Время отверждения, tотв, мин |
Максимальная температура отверждения, Тмах ,оС |
ЭД-20+15ПЭПА |
60 |
75 |
121 |
ЭД-20+40ФД+15ПЭПА |
30 |
50 |
64 |
ЭД-20+20ФОМ+15ПЭПА |
20 |
29 |
142 |
ЭД-20+20ФД+20ФОМ+15ПЭПА |
20 |
30 |
118 |
ЭД-20+30ТХЭФ+15ПЭПА |
50 |
70 |
110 |
Для наполненных сажей, ПФА, ТГО непластифицированных составов характерны высокие температуры отверждения исходного олигомера (таб. 4).
Таблица 3.
Влияние состава композиции и параметров отверждения на степень превращения эпоксидного олигомера
Состав материала, масс. ч., на 100 масс. ч. ЭД-20 |
Степень превращения, Х, % | ||
Т=250С, t=24 ч |
Т=900С, t=1 ч |
Т=900С, t=3 ч | |
ЭД-20 |
90 |
94 |
99 |
ЭД-20+40ФД |
86 |
88 |
92 |
ЭД-20+20ФОМ |
99 |
99 |
- |
ЭД-20+20ФД+20ФОМ |
87 |
96 |
- |
ЭД-20+30ТХЭФ+15ПЭПА |
89 |
95 |
97 |
Только введение в состав исходного олигомера NH4Cl снижает максимальную температуру с 121 до 72ºС и увеличивает время отверждения до 87 минут (табл. 4).
Таблица 4.
Кинетика отверждения наполненных эпоксидных композиций
Состав материала, масс. ч., на 100 масс. ч. ЭД-20 |
Время гелеобразования, tгел, мин. |
Время отверждения, tотв, мин |
Макс. темп-ра отверждения, Тмах ,оС |
ЭД-20+15ПЭПА |
60 |
75 |
121 |
ЭД-20+30ПФА+15ПЭПА |
30 |
45 |
120 |
ЭД-20+30 NH4Cl +15ПЭПА |
45 |
87 |
72 |
ЭД-20+5ГТО+15ПЭПА |
30 |
44 |
126 |
ЭД-20+5сажа+15ПЭПА |
25 |
32 |
146 |
Анализ данных ИК-спектроскопии неотвержденной ЭД-20, рис. 3 кр.2, показал, что полосы поглощения, почти полостью совпадает со спектром смолы, приведенном в литературных источниках.
длина волны, см-1
Рис.3. ИК-спектры: 1-ПЭПА; 2-ЭД-20; 3-ЭД-20+15ПЭПА;
4 – ЭД-20+30 ТХЭФ +15 ПЭПА; 5-ЭД-20+40ФД +15ПЭПА,
6-ЭД-20+20ФОМ+15ПЭПА
Методом ИКС определено наличие в спектрах эпоксидной композиции содержащей ФД, полосы поглощения при 1183 см –1, соответствующей валентным колебаниям –СО– простой эфирной связи, отсутствующей у ФД и ЭД-20,что свидетельствует о химическом взаимодействии компонентов, рис. 3. Кроме того, по данным ДИСК, отмечено наличие высокого значения интегрального теплового эффекта в композиции ФД+ПЭПА, табл. 5. Поэтому, вероятнее всего, ФД взаимодействует не только с олигомером, но и с ПЭПА.
В ИК спектрах композиции ЭД-20 +ФОМ обнаружено отсутствие пика валентных колебаний связи –С=С– , принадлежащей ФОМу и появление новых пиков (1150-1070 см–1) группы -С-О-С- алифатического эфира. Эти данные подтверждают взаимодействие ФОМа с олигомером по гидроксильным группам с раскрытием двойной связи. Это взаимодействие подтверждается и высокими значениями интегрального теплового эффекта (табл. 5) и температуры отверждения (140ºC).