Рефрактометрический метод анализа в химии
Для полярных веществ ε > n2. Для воды, например, n2 = 1,78 (λ = 589,3 нм), а ε = 78. Более того, в этих случаях нельзя непосредственно экстраполировать nλ по формуле Коши вследствие того, что показатель преломления полярных веществ часто аномально изменяется с частотой. Однако обычно нет необходимости производить такую экстраполяцию, так как рефракция является величиной аддитивной и сохраняется, если показатели преломления всех веществ измерять при определённой длине волны. За такую стандартную длину волны выбрана жёлтая линия в спектре натрия (λD = 589,3). В справочных таблицах приводятся данные именно для этой длины волны. Таким образом, для расчёта молекулярной рефракции (в см3/моль) пользуются формулой, в которой n∞ заменён на nD:
. (22)
Обычно индекс D опускают и формулу записывают как уравнение (19).
3. Рефракция и структура молекул
3.1 Аддитивность рефракции
Рефракция, является аддитивной величиной. Использование рефрактометрии в науке было начато в середине XIX века, когда обнаружили, что между молекулярными рефракциями соседних членов гомологического ряда органических соединений выполняется простое соотношение:
.(23)
Согласно этому соотношению молекулярную рефракцию k-го члена гомологического ряда можно представить в виде суммы молекулярных рефракций первого члена ряда и k−1 группы СН2:
.(24)
Впоследствии было обнаружено, что ряд изомеров также имеют одинаковые молекулярные рефракции. Это обстоятельство позволило предположить, что молекулярная рефракция вещества зависит только от природы и числа атомов в молекуле и может быть вычислена простым суммированием характерных для каждого элемента атомных рефракций:
,(25)
где – молекулярная рефракция органического соединения состава СnHmOiXq;
RC, RH и др. – соответственно рефракции атомов углерода, водорода и других элементов (табл. 3).
Было установлено и то, что молекулярная рефракция большого числа органических соединений может весьма отличаться от суммы составных рефракций. К простейшим соединениям такого типа относятся этиленовые углеводороды и их алкилпроизводные. Этот класс соединений всё же был включён в аддитивную схему путём учёта того обстоятельства, что в этих соединениях имеются двойные связи типа С=С, аналогично был произведён учёт наличия тройных связей С≡С, которыми характеризуются ацетиленовые соединения.
Таким образом, рассчитывая рефракцию молекулы через рефракции составляющих её атомов и фрагментов, следует учитывать валентные состояния атомов – инкременты (вклады) рефракций двойных и тройных связей, а также поправки на особое положение отдельных атомов и атомных групп в молекулах:
R = ∑RA + ∑R1, (26)
где RА и R1 – соответственно атомные рефракции и инкременты связей (табл. 3, 4).
Поляризуемость ионов. В органической химии большое значение имеет поляризуемость анионов. Существует несколько наборов рефракций ионов. Определяемых либо в растворах, либо в твёрдом или газообразном состоянии.
1. Рефракции и, следовательно, поляризуемости увеличиваются с увеличением размера иона в пределах одной группы периодической системы химических элементов.
Например: F¯ < Cl¯ < J¯ (табл. 3); ОН¯ < SH¯ (табл. 4).
2. Анионы легче поляризуются, чем соответствующие нейтральные молекулы.
Например: SH¯ > H2S; OH¯ > H2O.
3. Анионы с большим зарядом легче поляризуются, чем с меньшим.
Например: S2– > SH¯.
Наличие координационной (донорно-акцепторной, семиполярной) связи в молекуле вызывает уменьшение рефракции по сравнению с суммой рефракций индивидуальных молекул, образующих эту связь.
Например: величины R для (СН3)3N+–B¯F3 и (C2H5)2O+−B¯F3 примерно на 3,5 и 2,0 см3 меньше суммы величин R для этих компонент [(CH3)3N – триметиламина, (С2Н5)2О – диэтилового эфира и BF3 – трёхфтористого бора].
Молекулярная рефракция обычно рассматривается как аддитивно конститутивное свойство. Конститутивный характер этого свойства следует из происхождения этого явления. Однако аддитивный характер совсем не так легко продемонстрировать, поскольку, хотя по определению следует, что рефракция молекул должна равняться сумме рефракций отдельных её частей, не вполне ясно, каким образом выделять эти части. Существуют три различные схемы для определения основных констант. Это система атомных рефракций, рефракций групп и связей. Так, согласно первой, R = ∑rA, где ∑r выражает сумму индивидуальных атомных рефракций.
Например, для этилового спирта СН3СН2ОН или диметилового эфира СН3ОСН3 она равна 2r + 5rH + r0.
Согласно второй схеме, величина R для этилового спирта определяется как сумма рефракций групп (), в то время как для диметилового эфира эта величина будет равна ().
Согласно третьей схеме, величина R для этилового спирта будет определяться суммой (5rC−H + rC−C + rO−H), а для диметилового эфира (6rC−H + 2rC−O).
Эти схемы не дают идентичных значений для одного и того же соединения, а также ни одна из них не даёт строго аддитивных значений.
Схема рефракции связей является наилучшей из всех трёх для определения рефракции органических молекул. Наиболее важное её преимущество перед другими связано с тем, что эта схема облегчает прямой подход к концепции анизотропии поляризации, причём этот термин означает, что поляризуемость орбитали, ориентация которых совпадает с направлением поля, отличается от их поляризуемости при иной ориентации. Само по себе не кажется очевидным, что поляризуемость почти сферических атомов должна изменяться при изменении ориентации молекулы в поле: более очевидным является то, что поляризуемость связей должна изменяться в соответствии с тем - колинеарны они полю или перпендикулярны ему, и удалось добиться некоторых положительных результатов при анализе рефракций связей, представляя их как совокупность продольных, поперечных и вертикальных параметров.
Одна из главных трудностей, с которыми приходится сталкиваться, – это решение вопроса о вкладе в общую поляризуемость, вносимом несвязанными парами электронов гетероатомов таких групп, как С–Х, С–О, С–N.
Величина R прямо пропорциональна электронной поляризуемости молекул и обладает свойством аддитивности, так что её можно вычислить суммированием ряда постоянных слагаемых Ri, приписываемых содержащимся в молекуле атомам, группам атомов, связям или некоторым особенностям структуры (кратным связям, кольцам) и называемых соответственно атомными, групповыми, связевыми рефракциями и структурными инкрементами: